• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小波分析和自相关计算的非接触式生理信号检测

刘璐瑶 张森 肖文栋

刘璐瑶, 张森, 肖文栋. 基于小波分析和自相关计算的非接触式生理信号检测[J]. 工程科学学报, 2021, 43(9): 1206-1214. doi: 10.13374/j.issn2095-9389.2021.01.13.001
引用本文: 刘璐瑶, 张森, 肖文栋. 基于小波分析和自相关计算的非接触式生理信号检测[J]. 工程科学学报, 2021, 43(9): 1206-1214. doi: 10.13374/j.issn2095-9389.2021.01.13.001
LIU Lu-yao, ZHANG Sen, XIAO Wen-dong. Noncontact vital signs detection using joint wavelet analysis and autocorrelation computation[J]. Chinese Journal of Engineering, 2021, 43(9): 1206-1214. doi: 10.13374/j.issn2095-9389.2021.01.13.001
Citation: LIU Lu-yao, ZHANG Sen, XIAO Wen-dong. Noncontact vital signs detection using joint wavelet analysis and autocorrelation computation[J]. Chinese Journal of Engineering, 2021, 43(9): 1206-1214. doi: 10.13374/j.issn2095-9389.2021.01.13.001

基于小波分析和自相关计算的非接触式生理信号检测

doi: 10.13374/j.issn2095-9389.2021.01.13.001
基金项目: 国家重点研发计划课题资助项目(2017YFB1401203);佛山市科技创新专项资助项目(BK20AF005)
详细信息
    通讯作者:

    E-mail: wdxiao@ustb.edu.cn

  • 中图分类号: TP274.2

Noncontact vital signs detection using joint wavelet analysis and autocorrelation computation

More Information
  • 摘要: 采用调频连续波(Frequency modulated continuous wave, FMCW)雷达实现非接触式生理信号检测,并提出了基于小波分析和自相关计算(Wavelet analysis and autocorrelation computation, WAAC)的检测方法。首先,毫米波FMCW雷达发射电磁波信号,并接收来自身体的反射信号。然后,通过信号预处理从中频信号中提取包含呼吸和心跳的相位信息,消除直流偏置并完成相位解缠。最后,基于小波包分解(Wavelet packet decomposition, WPD)从原始信号中得到心跳和呼吸信号,利用自相关计算减小杂波对心跳信号的影响,进而提取高精度的心率参数。应用FMCW雷达对10名受试者进行实验测试,结果表明本文方法得到的呼吸和心率的平均绝对误差率平均值分别小于1.65%和1.83%。

     

  • 图  1  基于FMCW雷达的非接触式生理信号检测模型

    Figure  1.  Noncontact vital signs detection model based on FMCW radar

    图  2  基于FMCW雷达的非接触式生理信号检测方法流程图

    Figure  2.  Noncontact vital signs detection processing procedure based on FMCW radar

    图  3  小波包分解图

    Figure  3.  Wavelet packet decomposition diagram

    图  4  自相关计算示意图

    Figure  4.  Autocorrelation computation diagram

    图  5  基于FMCW雷达的非接触式生理信号检测实验场景

    Figure  5.  Scenario of noncontact vital signs detection based on FMCW radar.

    图  6  雷达相位信号(a)以及雷达相位信号频谱(b)

    Figure  6.  Radar phase signal (a) and radar phase frequency spectrum (b)

    图  7  雷达和参考传感器的呼吸和心跳信号比较。(a)呼吸信号;(b)心跳信号

    Figure  7.  Time domain respiration and heartbeat signals from the radar system and reference sensor: (a) respiration signal; (b) heartbeat signal

    图  8  雷达和参考信号的呼吸速率及心跳速率。(a)呼吸速率;(b)心跳速率

    Figure  8.  Instantaneous BR and HR from the radar system and reference signal: (a) instantaneous BR; (b) instantaneous HR

    表  1  雷达参数配置

    Table  1.   Radar configuration parameters

    fmin/GHzTd/μsS/(MHz·s−1)B/MHzfslow/Hzffast/MHz
    76.44820960203.2
    下载: 导出CSV

    表  2  10名受试者在不同距离生理特征速率测量平均绝对误差率

    Table  2.   AAEP of radar instantaneous vital sign rates detection from ten subjects at six different distances

    SubjectGenderHeight/cmWeight/kgHR AAEP/%BR AAEP/%
    0.5 m1.0 m1.5 m2.0 m2.5 m3.0 m0.5 m1.0 m1.5 m2.0 m2.5 m3.0 m
    1Male178900.871.080.991.592.803.930.451.381.032.842.773.11
    2Male176850.693.021.472.983.604.140.840.632.193.124.613.50
    3Male171652.011.692.943.263.734.821.441.552.213.281.654.35
    4Male173681.923.454.784.905.767.743.231.104.062.453.964.06
    5Male183821.703.863.974.054.145.642.253.631.763.483.505.62
    6Male171732.072.983.774.724.906.580.961.532.642.672.454.81
    7Female170502.204.244.274.356.667.051.762.682.523.733.775.90
    8Female173532.333.953.944.916.809.661.092.392.282.324.826.17
    9Female176652.503.084.625.226.367.931.621.942.332.202.122.34
    10Female163482.053.023.333.685.357.282.861.682.132.944.775.00
    Average1.833.033.413.975.016.481.651.852.322.903.444.49
    下载: 导出CSV

    表  3  10名受试者在不同距离生理特征速率测量平均绝对误差

    Table  3.   AAE of radar instantaneous vital sign rates detection from ten subjects at six different distances

    SubjectGenderHeight/cmWeight/kgHR AAE (bpm)BR AAE (bpm)
    0.5 m1.0 m1.5 m2.0 m2.5 m3.0 m0.5 m1.0 m1.5 m2.0 m2.5 m3.0 m
    1Male178900.660.730.620.961.802.450.080.220.150.410.380.46
    2Male176850.542.341.141.762.272.450.110.100.330.430.570.51
    3Male171651.641.372.161.982.393.100.290.290.380.480.250.63
    4Male173681.252.322.964.655.627.740.440.150.260.631.021.17
    5Male183821.162.622.602.472.453.280.300.510.210.580.510.91
    6Male171731.381.982.502.914.653.770.130.190.330.320.630.70
    7Female170501.563.833.634.036.306.960.260.290.380.920.971.50
    8Female173532.182.322.394.636.5410.40.200.420.380.581.121.68
    9Female176651.742.223.405.416.597.650.260.310.310.630.300.55
    10Female163481.741.962.193.505.257.120.370.250.320.791.151.42
    Average1.392.172.363.234.395.490.240.270.300.580.690.93
    下载: 导出CSV
  • [1] Loon K, Breteler M J M, Wolfwinkel L, et al. Wireless non-invasive continuous respiratory monitoring with FMCW radar: A clinical validation study. J Clin Monit Comput, 2016, 30(6): 797 doi: 10.1007/s10877-015-9777-5
    [2] Kundu S K, Kumagai S, Sasaki M. A wearable capacitive sensor for monitoring human respiratory rate. Jpn J Appl Phys, 2013, 52(4S): 04CL05 doi: 10.7567/JJAP.52.04CL05
    [3] Sevindir H K, Çet$ {\rm{\dot u}} $nkaya S, Şayli Ö. Wavelet transform based noise removal from ECG signal for accurate heart rate detection using ECG // 2015 Medical Technologies National Conference (TIPTEKNO). Bodrum, 2015: 1
    [4] Madhav K V, Ram M R, Krishna E H, et al. Estimation of respiration rate from ECG, BP and PPG signals using empirical mode decomposition // 2011 IEEE International Instrumentation and Measurement Technology Conference. Hangzhou, 2011: 1
    [5] Xiao S L, Yang P F, Liu L Y, et al. Extraction of respiratory signals and respiratory rates from the photoplethysmogram // 15th EAI International Conference, BODYNETS 2020. Tallinn, 2020: 184
    [6] Zhao H, Hong H, Sun L, et al. Noncontact physiological dynamics detection using low-power digital-IF Doppler radar. IEEE Trans Instrum Meas, 2017, 66(7): 1780 doi: 10.1109/TIM.2017.2669699
    [7] Hu W, Zhao Z Y, Wang Y F, et al. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor. IEEE Trans Biomed Eng, 2014, 61(3): 725 doi: 10.1109/TBME.2013.2288319
    [8] Sachs J, Helbig M, Herrmann R, et al. Remote vital sign detection for rescue, security, and medical care by ultra-wideband pseudo-noise radar. Ad Hoc Networks, 2014, 13: 42 doi: 10.1016/j.adhoc.2012.07.002
    [9] Xu Y K, Shi P, Yu H L. Progress on human physiological parameter detection based on imaging PPG. Beijing Biomed Eng, 2017, 36(6): 648 doi: 10.3969/j.issn.1002-3208.2017.06.016

    许彦坤, 石萍, 喻洪流. 基于成像式光电容积描记技术的人体生理参数检测研究进展. 北京生物医学工程, 2017, 36(6):648 doi: 10.3969/j.issn.1002-3208.2017.06.016
    [10] Takano C, Ohta Y. Heart rate measurement based on a time-lapse image. Med Eng Phys, 2007, 29(8): 853 doi: 10.1016/j.medengphy.2006.09.006
    [11] Qin R X, Chen Z X. Non-contact stable heart rate measurement algorithm under face motion conditions. Opt Tech, 2021, 47(1): 87

    秦睿星, 陈兆学. 人脸运动状态下的非接触式心率稳定测量算法. 光学技术, 2021, 47(1):87
    [12] Ghanadian H, Ghodratigohar M, Osman H A. A machine learning method to improve non-contact heart rate monitoring using an RGB camera. IEEE Access, 2018, 6: 57085 doi: 10.1109/ACCESS.2018.2872756
    [13] Hanawa D, Inou H, Mishima S, et al. Basic study on noncontact sensing of flow velocity in nasal breathing by using far infrared optical imaging // 2020 Opto-Electronics and Communications Conference (OECC). Taipei, 2020: 1
    [14] Wang F K, Horng T S, Peng K C, et al. Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation. IEEE Trans Microw Theory Tech, 2011, 59(12): 3577 doi: 10.1109/TMTT.2011.2171712
    [15] Li C Z, Lin J. Random body movement cancellation in Doppler radar vital sign detection. IEEE Trans Microw Theory Tech, 2008, 56(12): 3143 doi: 10.1109/TMTT.2008.2007139
    [16] Liang X L, Zhang H, Ye S B, et al. Improved denoising method for through-wall vital sign detection using UWB impulse radar. Digit Signal Process, 2018, 74: 72 doi: 10.1016/j.dsp.2017.12.004
    [17] Ren L Y, Koo Y S, Wang H F, et al. Noncontact multiple heartbeats detection and subject localization using UWB impulse Doppler radar. IEEE Microw Wirel Components Lett, 2015, 25(10): 690 doi: 10.1109/LMWC.2015.2463214
    [18] Kim S, Lee K K. Low-complexity joint extrapolation-MUSIC-based 2-D parameter estimator for vital FMCW radar. IEEE Sensors J, 2019, 19(6): 2205 doi: 10.1109/JSEN.2018.2877043
    [19] Wang G C, Gu C Z, Inoue T, et al. A hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring. IEEE Trans Microw Theory Tech, 2014, 62(11): 2812 doi: 10.1109/TMTT.2014.2358572
    [20] Li C Z, Lubecke V M, Boric-Lubecke O, et al. A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring. IEEE Trans Microw Theory Tech, 2013, 61(5): 2046 doi: 10.1109/TMTT.2013.2256924
    [21] Yan J M, Hong H, Zhao H, et al. Through-wall multiple targets vital signs tracking based on VMD algorithm. Sensors, 2016, 16(8): 1293 doi: 10.3390/s16081293
    [22] Muñoz-Ferreras J M, Wang J, Peng Z Y, et al. From Doppler to FMCW radars for non-contact vital-sign monitoring. // 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC). Gran Canaria, 2018: 1
    [23] Zhang D, Kurata M, Inaba T. FMCW radar for small displacement detection of vital signal using projection matrix method. Int J Antennas Propag, 2013, 2013: 1
    [24] Wang Y, Wang W, Zhou M, et al. Remote monitoring of human vital signs based on 77-GHz mm-wave FMCW radar. Sensors, 2020, 20(10): 2999 doi: 10.3390/s20102999
    [25] Hu W, Zhang H Y, Zhao Z Y, et al. Real-time remote vital sign detection using a portable Doppler sensor system // 2014 IEEE Sensors Applications Symposium (SAS). Queenstown, 2014: 89
    [26] Zhangi T, Valerio G, Sarrazin J, et al. Wavelet-based analysis of 60 GHz Doppler radar for non-stationary vital sign monitoring // 2017 11th European Conference on Antennas and Propagation (EUCAP). Paris, 2017: 1876
    [27] Li M Y, Lin J. Wavelet-transform-based data-length-variation technique for fast heart rate detection using 5.8-GHz CW Doppler radar. IEEE Trans Microw Theory Tech, 2018, 66(1): 568 doi: 10.1109/TMTT.2017.2730182
    [28] Kim J Y, Park J H, Jang S Y, et al. Peak detection algorithm for vital sign detection using Doppler radar sensors. Sensors, 2019, 19(7): 1575 doi: 10.3390/s19071575
    [29] Alizadeh M, Shaker G, Almeida J C M D, et al. Remote monitoring of human vital signs using mm-wave FMCW radar. IEEE Access, 2019, 7: 54958 doi: 10.1109/ACCESS.2019.2912956
    [30] Sun L, Li Y S, Hong H, et al. Super-resolution spectral estimation in short-time non-contact vital sign measurement. Rev Sci Instruments, 2015, 86(4): 044708 doi: 10.1063/1.4916954
    [31] Zhang Z L, Pi Z Y, Liu B Y. TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Trans Biomed Eng, 2015, 62(2): 522 doi: 10.1109/TBME.2014.2359372
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  62
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 网络出版日期:  2021-03-25
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回