• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向视网膜脱离手术的硅油填充模拟

徐衍睿 班晓娟 王笑琨 王宇 尹豆 周靖 黄厚斌 朱志鸿

徐衍睿, 班晓娟, 王笑琨, 王宇, 尹豆, 周靖, 黄厚斌, 朱志鸿. 面向视网膜脱离手术的硅油填充模拟[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.01.13.006
引用本文: 徐衍睿, 班晓娟, 王笑琨, 王宇, 尹豆, 周靖, 黄厚斌, 朱志鸿. 面向视网膜脱离手术的硅油填充模拟[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.01.13.006
XU Yan-rui, BAN Xiao-juan, WANG Xiao-kun, WANG Yu, YIN Dou, ZHOU Jing, HUANG Hou-bin, ZHU Zhi-hong. Simulations of silicone oil filling for use in retinal detachment surgery[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.01.13.006
Citation: XU Yan-rui, BAN Xiao-juan, WANG Xiao-kun, WANG Yu, YIN Dou, ZHOU Jing, HUANG Hou-bin, ZHU Zhi-hong. Simulations of silicone oil filling for use in retinal detachment surgery[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.01.13.006

面向视网膜脱离手术的硅油填充模拟

doi: 10.13374/j.issn2095-9389.2021.01.13.006
基金项目: 海南省财政科技计划资助项目(ZDYF2020031,ZDYF2019009);国家自然科学基金资助项目(61873299);佛山市人民政府科技创新专项资金资助项目(BK20AF001,BK19AE034);中央高校基本科研基金资助项目(FRF-TP-19-043-A2)
详细信息
    通讯作者:

    E-mail:wangxiaokun@ustb.edu.cn

  • 中图分类号: R774.1;TP399

Simulations of silicone oil filling for use in retinal detachment surgery

More Information
  • 摘要: 针对传统医疗手段无法有效量化评估手术中不同硅油加注量对于视网膜裂孔贴附效果的问题,本文提出一种面向视网膜脱离手术的硅油填充模拟方法,基于物理建模与计算机数值离散化技术对眼内受力、硅油填充状态进行分析,并对填充模拟过程进行三维模型构建与可视化,实现医疗过程决策辅助目的。首先对人类眼球与手术器具进行基础建模与模型采样,模拟手术流程中眼球状态;然后,根据水与硅油的密度、黏滞系数、表面张力等不同物理性质,对水‒硅油两相流动及交互进行模拟;最后,构建固液交互模型,实现多相液体在眼球中的运动与填充。实验结果表明,本文方法能够较好地呈现眼球内多相流体运动交互效果,实现了诸如表面张力、固液耦合、液体分层、连通器效应等效果,实现了对眼内腔中通过导管注入硅油与排出水分流程的模拟,为预测硅油填充后的眼内状态提供了一种有效的方式,辅助医生进行手术流程规划与效果预测。

     

  • 图  1  孔源性视网膜脱离(a)与正常眼底照相(b)

    Figure  1.  Photographs of rhegmatogenous retinal detachment (a) and normal fundus (b)

    图  2  玻璃体切割联合硅油填充术示意图。(a)孔源性视网膜脱离;(b)硅油眼内填充

    Figure  2.  Schematic diagram of vitrectomy combined with silicone oil tamponade: (a) rhegmatogenous retinal detachment; (b) silicone oil tamponade

    图  3  孔源性视网膜脱离治疗建模分析流程图

    Figure  3.  Modeling and analysis flow chart of rhegmatogenous retinal detachment

    图  4  SPH方法下粒子数值近似示意图

    Figure  4.  Numerical approximation of particles using smoothed particle hydrodynamics method

    图  5  边界处理示意图

    Figure  5.  Schematic diagram depicting boundary handling

    图  6  两相流溃坝实验。(a~d)流体运动过程粒子状态;(e~h)渲染后效果

    Figure  6.  Dam break experiment of two-phase flow: (a–d) particle state of fluid motion; (e–f) post-render effect

    图  7  不同张力系数下的水块冲击表现结果。(a~d)第22帧时$\alpha = 0,\;0.1,\;0.5,\;0.8$的效果;(e~h)第69帧时$\alpha = 0,\;0.1,\;0.5,\;0.8$的效果;(i~l)第503帧时(静止后)$\alpha = 0,\;0.1,\;0.5,\;0.8$的效果

    Figure  7.  Impact performance of water blocks with different tension coefficients: (a–d) effect at frame 22 when $\alpha = 0,\;0.1,\;0.5,\;0.8$; (e–h) effect at frame 69 when $\alpha = 0,\;0.1,\;0.5,\;0.8$; (i–l) effect at frame 503 (after rest) when $\alpha = 0,\;0.1,\;0.5,\;0.8$

    图  8  不同张力系数下液体表面积变化率

    Figure  8.  Rate of liquid surface area change under different tension coefficients

    图  9  眼球内两相液体交互。(a~c)第266帧两相均无表面张力、只有硅油具有表面张力、两相均有表面张力时的交互情况;(d~f)第376帧两相均无表面张力、只有硅油具有表面张力、两相均有表面张力时的交互情况

    Figure  9.  Two-phase liquid interaction in the eyeball: (a–c) interaction effect of the two phases without surface tension, only the surface tension of silicone oil, and the surface tension of both phases in frame 266; (d–f) interaction effect of the two phases without surface tension, only the surface tension of silicone oil, and the surface tension of both phases in frame 376

    图  10  硅油填充手术流程模拟:硅油顺导管注入并排出眼内水的流程

    Figure  10.  Simulation of silicone oil tamponade: flow of silicone oil injection and discharge of water from the hole along the guide tube

  • [1] Liao L, Zhu X H. Advances in the treatment of rhegmatogenous retinal detachment. Int J Ophthalmol, 2019, 12(4): 660
    [2] Kawaguchi M. Silicone oil emulsions stabilized by polymers and solid particles. Adv Colloid Interface Sci, 2016, 233: 186 doi: 10.1016/j.cis.2015.06.005
    [3] Moussa K, Leng T, Oatts J T, et al. Manual removal of intraocular lens silicone oil droplets and dystrophic calcifications using a nitinol loop: A case series. Ophthalmic Surg Lasers Imaging Retina, 2017, 48(5): 422 doi: 10.3928/23258160-20170428-09
    [4] Barca F, Caporossi T, Rizzo S. Silicone oil: Different physical proprieties and clinical applications. Biomed Res Int, 2014, 2014: 502143
    [5] Scott M N, Weng C Y. The evolution of pars plana vitrectomy to 27-G microincision vitrectomy surgery. Int Ophthalmol Clin, 2016, 56(4): 97 doi: 10.1097/IIO.0000000000000131
    [6] Kuhn F, Aylward B. Rhegmatogenous retinal detachment: A reappraisal of its pathophysiology and treatment. Ophthalmic Res, 2014, 51(1): 15 doi: 10.1159/000355077
    [7] Guan Y B, Chen W, Xie S Y. Characteristics of macular optical coherence tomography changes before and after silicone oil removal in patients with rhegmatogenous retinal detachment involving the macular area. Chin J Ocul Fundus Dis, 2016(3): 291 doi: 10.3760/cma.j.issn.1005-1015.2016.03.015

    关禹博, 陈伟, 谢世勇. 累及黄斑的孔源性视网膜脱离硅油取出手术前后黄斑区光相干断层扫描图像特征分析. 中华眼底病杂志, 2016(3):291 doi: 10.3760/cma.j.issn.1005-1015.2016.03.015
    [8] Li M, Zhao X, Lan Q Q, et al. Clinical research of complicated retinal detachment with inferior breaks using a heavy silicon oil as temporary tamponade. J Clin Ophthalmol, 2010, 18(5): 404 doi: 10.3969/j.issn.1006-8422.2010.05.007

    李敏, 赵昕, 蓝倩倩, 等. 重硅油填充治疗下方裂孔源性视网膜脱离的临床研究. 临床眼科杂志, 2010, 18(5):404 doi: 10.3969/j.issn.1006-8422.2010.05.007
    [9] Odrobina D, Gołębiewska J, Maroszyńska I. Choroidal thickness changes after vitrectomy with silicone oil tamponade for proliferative vitreoretinopathy retinal detachment. Retina (Phila Pa), 2017, 37(11): 2124 doi: 10.1097/IAE.0000000000001437
    [10] Roca J A, Wu L, Berrocal M, et al. Un-explained visual loss following silicone oil removal: results of the Pan American Collaborative Retina Study (PACORES) Group. Int J Retina Vitreous, 2017, 3: 26 doi: 10.1186/s40942-017-0079-6
    [11] Tong H J, Fu D M. Retinal feature quantization method based on a reference model. Chin J Eng, 2019, 41(9): 1222

    童何俊, 付冬梅. 基于参考模型的视网膜特征量化. 工程科学学报, 2019, 41(9):1222
    [12] Ma B Y, Jiang S F, Yin D, et al. Image segmentation metric and its application in the analysis of microscopic image. Chin J Eng, 2021, 43(1): 137

    马博渊, 姜淑芳, 尹豆, 等. 图像分割评估方法在显微图像分析中的应用. 工程科学学报, 2021, 43(1):137
    [13] Desbrun M, Gascuel M P. Smoothed particles: A new paradigm for animating highly deformable bodies. Comput Animat Simul 96, 1996: 61
    [14] Becker M, Teschner M. Weakly compressible SPH for free surface flows//Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, San Diego, 2007: 209
    [15] Solenthaler B, Pajarola R. Predictive-corrective incompressible SPH. ACM Trans Graph, 2009, 28(3): 1
    [16] Ihmsen M, Cornelis J, Solenthaler B, et al. Implicit incompressible SPH. IEEE Trans Vis Comput Graph, 2014, 20(3): 426 doi: 10.1109/TVCG.2013.105
    [17] Monaghan J J, Kajtar J B. SPH particle boundary forces for arbitrary boundaries. Comput Phys Commun, 2009, 180(10): 1811 doi: 10.1016/j.cpc.2009.05.008
    [18] Becker M, Tessendorf H, Teschner M. Direct forcing for Lagrangian rigid-fluid coupling. IEEE Trans Vis Comput Graph, 2009, 15(3): 493 doi: 10.1109/TVCG.2008.107
    [19] Harada T, Koshizuka S, Kawaguchi Y. Smoothed Particle Hydrodynamics on GPUs. Structure, 2007, 4(4): 671
    [20] Akinci N, Ihmsen M, Akinci G, et al. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans Graph, 2012, 31(4): 1
    [21] Macklin M, Müller M, Chentanez N, et al. Unified particle physics for real-time applications. ACM Trans Graph, 2014, 33(4): 1
    [22] Müller M, Solenthaler B, Keiser R, et al. Particle-based fluid-fluid interaction//Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York, 2005: 237
    [23] Ren B, Li C F, Yan X, et al. Multiple-fluid SPH simulation using a mixture model. ACM Trans Graph, 2014, 33(5): 1
    [24] Yan X, Jiang Y T, Li C F, et al. Multiphase SPH simulation for interactive fluids and solids. ACM Trans Graph, 2016, 35(4): 1
    [25] Lin W C. Boundary handling and porous flow for fluid-hair interactions. Comput Graph, 2015, 52: 33 doi: 10.1016/j.cag.2015.06.005
    [26] Nielsen M B, Østerby O. A two-continua approach to Eulerian simulation of water spray. ACM Trans Graph, 2013, 32(4): 1
    [27] Wang X K, Ban X J, Liu S N, et al. Small-scale surface details simulation using divergence-free SPH. J Vis Lang Comput, 2018, 48: 91 doi: 10.1016/j.jvlc.2018.07.005
    [28] Koschier D, Bender J, Solenthaler B, et al. Smoothed particle hydrodynamics techniques for the physics based simulation of fluids and solids[J/OL]. arXiv preprint (2020-9-15) [2021-6-23]. https://arxiv.org/abs/2009.06944.
    [29] Solenthaler B, Pajarola R. Density contrast SPH interfaces//Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville, Switzerland: Eurographics Association, 2008: 211
    [30] Akinci N, Akinci G, Teschner M. Versatile surface tension and adhesion for SPH fluids. ACM Trans Graph, 2013, 32(6): 1
  • 加载中
图(10)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  1
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 网络出版日期:  2021-09-06

目录

    /

    返回文章
    返回