• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连铸控流模式对大方坯及棒材组织结构与宏观偏析影响

王璞 铁占鹏 肖红 张壮 唐海燕 苗红生 张家泉

王璞, 铁占鹏, 肖红, 张壮, 唐海燕, 苗红生, 张家泉. 连铸控流模式对大方坯及棒材组织结构与宏观偏析影响[J]. 工程科学学报, 2021, 43(8): 1081-1089. doi: 10.13374/j.issn2095-9389.2021.01.27.007
引用本文: 王璞, 铁占鹏, 肖红, 张壮, 唐海燕, 苗红生, 张家泉. 连铸控流模式对大方坯及棒材组织结构与宏观偏析影响[J]. 工程科学学报, 2021, 43(8): 1081-1089. doi: 10.13374/j.issn2095-9389.2021.01.27.007
WANG Pu, TIE Zhan-peng, XIAO Hong, ZHANG Zhuang, TANG Hai-yan, MIAO Hong-sheng, ZHANG Jia-quan. Macrostructure and macrosegregation behavior of bloom products under various flow control modes of the casting process[J]. Chinese Journal of Engineering, 2021, 43(8): 1081-1089. doi: 10.13374/j.issn2095-9389.2021.01.27.007
Citation: WANG Pu, TIE Zhan-peng, XIAO Hong, ZHANG Zhuang, TANG Hai-yan, MIAO Hong-sheng, ZHANG Jia-quan. Macrostructure and macrosegregation behavior of bloom products under various flow control modes of the casting process[J]. Chinese Journal of Engineering, 2021, 43(8): 1081-1089. doi: 10.13374/j.issn2095-9389.2021.01.27.007

连铸控流模式对大方坯及棒材组织结构与宏观偏析影响

doi: 10.13374/j.issn2095-9389.2021.01.27.007
基金项目: 国家自然科学基金资助项目(U1860111, 51874033);国家重点研发计划资助项目(016YEB0601302);湖南省科技计划资助项目(2019RS2065)
详细信息
    通讯作者:

    E-mail:jqzhang@metall.ustb.edu.cn

  • 中图分类号: TF777.2

Macrostructure and macrosegregation behavior of bloom products under various flow control modes of the casting process

More Information
  • 摘要: 以中碳结构钢大方坯及其热轧棒材为研究对象,通过对铸坯和轧材进行低倍侵蚀和成分分析,揭示了连铸控流模式对大方坯凝固组织与宏观偏析分布特征的影响及其铸轧遗传性。研究表明:常规直通水口浇注模式下,结晶器电磁搅拌(Mold electromagnetic stirring, M-EMS)电流由0增加到800 A,铸坯等轴晶率由6.06%仅可增加到11.71%,难以有效避免大方坯常见的中心缩孔缺陷与突出的中心线偏析。采用新型五孔水口浇注模式,即使不开启M-EMS,铸坯中心等轴晶率仍可达23.1%,大方坯中心缩孔级别可降至1.0级以下,满足后续热轧大棒材探伤要求。同时发现,五孔水口浇注模式下,大方坯铸态组织中往往会出现较为明显的柱状晶到等轴晶转变(Columnar to equiaxed transition, CET)区,铸坯断面碳偏析指数呈M型分布,表现为断面1/4位置CET区域碳偏析指数最高。大棒材轧制基本改变不了铸坯断面宏观偏析的分布形态,且可能导致中心线偏析指数增加。同时指出,基于连铸控流模式的作用规律和铸‒轧遗传性特征,以及特殊钢长材热加工对中心致密度和偏析分布与程度的要求,实际生产中应从连铸工艺源头合理地控制铸态组织与宏观偏析分布形态。

     

  • 图  1  大方坯铸机和两种水口示意图

    Figure  1.  Schematic diagram of the bloom casting machine and the two kinds of nozzles

    图  2  大方坯铸坯(a)与热轧棒材(b)截面取样及钻屑示意图

    Figure  2.  Schematic diagram for section sampling and drilling of the as-cast bloom (a) and hot-rolled bar (b)

    图  3  结晶器不同控流模式下大方坯横截面低倍情况。(a)115-S3B;(b)115-S3Z;(c)536-S1B

    Figure  3.  Macrostructure of the bloom cross-section under different flow control modes in the mold: (a) 115-S3B;(b) 115-S3Z;(c) 536-S1B

    图  4  结晶器不同控流模式下铸坯等轴晶率

    Figure  4.  Equiaxed crystal ratios under different flow control modes in the mold

    图  5  不同F-EMS参数下大方坯低倍情况。(a)578-S2A铸坯横截面;(b)578-S2A铸坯纵截面;(c)579-S1A铸坯横截面;(d)579-S1A铸坯纵截面

    Figure  5.  Macrostructure of bloom castings under different parameters of the F-EMS: (a) cross-section of 578-S2A;(b) longitudinal section of 578-S2A;(c) cross-section of 579-S1A;(d) longitudinal section of 579-S1A

    图  6  不同F-EMS参数下热轧圆棒低倍情况。(a)578-S2A轧材横截面;(b)578-S2A轧材纵截面;(c)579-S1A轧材横截面;(d)579-S1A轧材纵截面

    Figure  6.  Macrostructure of hot-rolled bars under different parameters of the F-EMS: (a) cross-section of 578-S2A;(b) longitudinal section of 578-S2A;(c) cross-section of 579-S1A;(d) longitudinal section of 579-S1A

    图  7  不同拉速下大方坯低倍形貌。(a)579-S3B铸坯横截面;(b)579-S3B铸坯纵截面;(c)579-S2B铸坯横截面;(d)579-S2B铸坯纵截面

    Figure  7.  Macrostructure of bloom castings under different casting speeds: (a) cross-section of 579-S3B;(b) longitudinal section of 579-S3B;(c) cross-section of 579-S2B;(d) longitudinal section of 579-S2B

    图  8  五孔水口组合控流模式下不同拉速铸坯等轴晶率

    Figure  8.  Equiaxed crystal ratios under different casting speeds with combined flow control modes

    图  9  两种控流模式下大方坯纵截面低倍及碳偏析指数分布。(a)115-S3Z;(b)536-S2B

    Figure  9.  Macrostructure and carbon segregation index in the bloom longitudinal sections under two flow control modes: (a) 115-S3Z;(b) 536-S2B

    图  10  铸态枝晶组织特征与CET区正偏析形成机理

    Figure  10.  Schematic illustration of the as-cast macrostructure and location of the CET zone

    1—chilled layed;2—columnar zone;3—CET zone;4—solid-liquid zone of euqiaxed;5—liquid-solid zone of equiaxed

    图  11  铸坯(左)与轧材(右)钻屑取样及其局域点状偏析分布特征示意图

    Figure  11.  Schematic illustration of sample drilling and local spot segregation distribution in the bloom casting and rolled bar

    图  12  碳偏析指数分布特征。(a)铸坯;(b)轧材

    Figure  12.  Distribution of the carbon segregation index: (a) as-cast bloom;(b) hot-rolled bar

    表  1  大方坯连铸机及生产工艺基本参数

    Table  1.   Bloom continuous casting machine and its basic production parameters

    Number of
    castings
    Spacing of each
    strand/ mm
    Cross-section/
    (mm×mm)
    Radius of continuous
    caster/m
    Mold length/
    mm
    Maximum metallurgical
    length/m
    Electromagnetic stirring
    technology
    3 strands2200410×53016.578034M-EMS+F-EMS
    下载: 导出CSV

    表  2  45钢主要化学成分(质量分数)

    Table  2.   Chemical composition of 45 steel %

    CSiMnCrNiSP
    0.42–0.500.17–0.370.5–0.8≤0.25≤0.25≤0.035≤0.035
    下载: 导出CSV

    表  3  试样编号及浇铸试验工况

    Table  3.   Sample numbers and casting conditions

    Sample
    number
    Injection
    mode
    Superheat
    degree/℃
    Casting speed/
    (m·min−1)
    (Current intensity/A) \
    (Frequency/Hz)
    M-EMSF-EMS
    115-S3BNormal nozzle200.380\0700\7.5
    115-S3ZNormal nozzle200.38800\1.5700\7.5
    536-S1BFive-port nozzle330.380\0700\7.5
    536-S2BFive-port nozzle330.38300\1.5700\7.5
    578-S2AFive-port nozzle280.38500\1.5660\7.5
    579-S1AFive-port nozzle280.38500\1.5800\5
    579-S3BFive-port nozzle280.40500\1.5800\5
    579-S2BFive-port nozzle280.42500\1.5800\5
    下载: 导出CSV
  • [1] Wang P, Li S X, Zhang Z, et al. Effect of combined stirring modes on the solidification behavior of special steel bloom casting. J Mech Eng, 2020, 56(12): 99 doi: 10.3901/JME.2020.12.099

    王璞, 李少翔, 张壮, 等. 组合搅拌模式对连铸特殊钢大方坯凝固行为的影响. 机械工程学报, 2020, 56(12):99 doi: 10.3901/JME.2020.12.099
    [2] Sun H, Li L. Application of swirling flow nozzle and investigation of superheat dissipation casting for bloom continuous casing. Ironmak Steelmak, 2016, 43(3): 228 doi: 10.1179/1743281215Y.0000000039
    [3] Jiang D B, Zhu M Y. Center segregation with final electromagnetic stirring in billet continuous casting process. Metall Mater Trans B, 2017, 48(1): 444 doi: 10.1007/s11663-016-0864-x
    [4] Ayata K, Mori T, Fujimoto T, et al. Improvement of macrosegregation in continuously cast bloom and billet by electromagnetic stirring. Trans Iron Steel Inst Jpn, 1984, 24(11): 931 doi: 10.2355/isijinternational1966.24.931
    [5] Wu H J, Wei N, Bao Y P, et al. Effect of M-EMS on the solidification structure of a steel billet. Int J Miner Metall Mater, 2011, 18(2): 159 doi: 10.1007/s12613-011-0416-y
    [6] Wu Q M, Xu W Y, Yan H C, et al. Carbon macro-segregation control of rolled bar produced from cast bloom of 20CrMnTiH steel. Iron Steel, 2012, 47(5): 23

    吴清明, 许伟阳, 颜慧成, 等. 20CrMnTiH齿轮钢大方坯轧制圆钢宏观碳偏析控制. 钢铁, 2012, 47(5):23
    [7] Sun H B, Zhang J Q. Study on the macrosegregation behavior for the bloom continuous casting: Model development and validation. Metall Mater Trans B, 2014, 45(3): 1133 doi: 10.1007/s11663-013-9986-6
    [8] Wang P, Tie Z P, Li S X, et al. Effect of M-EMS current intensity on the subsurface segregation and internal solidification structure for bloom casting of 42CrMo steel. Ironmak Steelmak, 2021: 1
    [9] An H H, Bao Y P, Wang M, et al. Effect of combining F-EMS and MSR on the segregation and shrinkage cavity in continuously cast high-carbon steel blooms. Chin J Eng, 2017, 39(7): 996

    安航航, 包燕平, 王敏, 等. 凝固末端电磁搅拌和轻压下复合技术对大方坯高碳钢偏析和中心缩孔的影响. 工程科学学报, 2017, 39(7):996
    [10] Ding N, Bao Y P, Sun Q S, et al. Location determination of final electromagnetic stirring and its effect on central carbon segregation for SWRH82B steel. J Univ Sci Technol Beijing, 2011, 33(1): 17

    丁宁, 包燕平, 孙奇松, 等. 末端电磁搅拌位置确定及对SWRH82B钢中心偏析的影响. 北京科技大学学报, 2011, 33(1):17
    [11] Wang B, Xie Z, Jia G L, et al. Parameter determination and effects on center segregation of F-EMS. Iron Steel, 2007, 42(3): 18 doi: 10.3321/j.issn:0449-749X.2007.03.005

    王彪, 谢植, 贾光霖, 等. 凝固末端电磁搅拌参数确定及其对中心偏析的影响. 钢铁, 2007, 42(3):18 doi: 10.3321/j.issn:0449-749X.2007.03.005
    [12] Wang X D, Wang B F, Cao J G, et al. Determination of F-EMS position and process parameters in bloom continuous caster. Iron Steel, 2011, 46(8): 40

    王晓东, 王宝峰, 曹建刚, 等. 大方坯末端电磁搅拌位置和连铸工艺参数的确定. 钢铁, 2011, 46(8):40
    [13] Li S X, Han Z Q, Zhang J Q. Numerical modeling of the macrosegregation improvement in continuous casting blooms by using F-EMS. JOM, 2020, 72(11): 4117 doi: 10.1007/s11837-020-04363-6
    [14] Chen L, Song B, Chen T M, et al. Control countermeasures of center porosity and shrinkage in 45 steel continuous casting bloom. Iron Steel, 2018, 53(8): 49

    陈亮, 宋波, 陈天明, 等. 45钢连铸大方坯中心疏松与缩孔控制. 钢铁, 2018, 53(8):49
    [15] Sun H B, Zhang J Q. Macrosegregation improvement by swirling flow nozzle for bloom continuous castings. Metall Mater Trans B, 2014, 45(3): 936 doi: 10.1007/s11663-013-9999-1
    [16] Sun H B, Han Z G, Qian H Z, et al. Effects of injection modes on the flow pattern and temperature distribution of molten steel in a bloom casting mould. J Univ Sci Technol Beijing, 2010, 32(9): 1131

    孙海波, 韩占光, 钱宏智, 等. 注流方式对大方坯连铸结晶器内钢水流动与温度状态影响. 北京科技大学学报, 2010, 32(9):1131
    [17] Cheng X W, Fu Q H, Dai F Q, et al. Application of swirling flow nozzle technology for bloom continuous castings. Steelmaking, 2015, 31(5): 32

    程晓文, 付谦惠, 戴方钦, 等. 旋流水口浇铸技术在大方坯连铸的应用研究. 炼钢, 2015, 31(5):32
    [18] Wang P, Li S X, Tang H Y, et al. Swirling flow effect of radial outlet nozzle for bloom and its effect on initial solidification. China Metall, 2019, 29(9): 15

    王璞, 李少翔, 唐海燕, 等. 大方坯径向水口旋流效应及其对凝固的影响. 中国冶金, 2019, 29(9):15
    [19] Xu W Y. The Formation and Control of Carbon Segregation of Gear Steel in the Bloom Casting Process [Dissertation]. Beijing: Central Iron and Steel Research Institute, 2012

    许伟阳. 连铸齿轮钢矩形坯碳“锭型”偏析的形成与控制[学位论文]. 北京: 钢铁研究总院, 2012
    [20] Ji Y, Lan P, Geng H, et al. Behavior of spot segregation in continuously cast blooms and the resulting segregated band in oil pipe steels. Steel Res Int, 2018, 89(3): 1700331 doi: 10.1002/srin.201700331
    [21] Li B, Zhang Z H, Liu H S, et al. Characteristics and evolution of the spot segregations and banded defects in high strength corrosion resistant tube steel. Acta Metall Sin, 2019, 55(6): 762 doi: 10.11900/0412.1961.2018.00557

    李博, 张忠铧, 刘华松, 等. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变. 金属学报, 2019, 55(6):762 doi: 10.11900/0412.1961.2018.00557
    [22] Xu Z G, Wang X H, Jiang M, et al. Investigation on formation of equiaxed zone in low carbon steel slabs. Metall Res Technol, 2016, 113(1): 106 doi: 10.1051/metal/2015053
    [23] Wang P, Zhang Z, Tie Z P, et al. Initial transfer behavior and solidification structure evolution in a large continuously cast bloom with a combination of nozzle injection mode and M-EMS. Metals, 2019, 9(10): 1083 doi: 10.3390/met9101083
    [24] Sun H B, Li L J, Wu X X, et al. Effect of subsurface negative segregation induced by M-EMS on componential homogeneity for bloom continuous casting. Metall Res Technol, 2018, 115(6): 603 doi: 10.1051/metal/2018031
    [25] Niu L, Qiu S T, Zhao J X, et al. Effects of continuous casting process parameters on carbon segregation degree of 38CrMoAl steel big round billet. J Iron Steel Res, 2018, 30(5): 359

    牛亮, 仇圣桃, 赵俊学, 等. 连铸工艺参数对38CrMoAl大圆坯碳偏析的影响. 钢铁研究学报, 2018, 30(5):359
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  72
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-27
  • 网络出版日期:  2021-03-08
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回