• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雾辅助物联网中公平节能的计算迁移

陈思光 尤子慧

陈思光, 尤子慧. 雾辅助物联网中公平节能的计算迁移[J]. 工程科学学报, 2022, 44(11): 1926-1934. doi: 10.13374/j.issn2095-9389.2021.02.19.002
引用本文: 陈思光, 尤子慧. 雾辅助物联网中公平节能的计算迁移[J]. 工程科学学报, 2022, 44(11): 1926-1934. doi: 10.13374/j.issn2095-9389.2021.02.19.002
CHEN Si-guang, YOU Zi-hui. Fairness and energy co-aware computation offloading for fog-assisted IoT[J]. Chinese Journal of Engineering, 2022, 44(11): 1926-1934. doi: 10.13374/j.issn2095-9389.2021.02.19.002
Citation: CHEN Si-guang, YOU Zi-hui. Fairness and energy co-aware computation offloading for fog-assisted IoT[J]. Chinese Journal of Engineering, 2022, 44(11): 1926-1934. doi: 10.13374/j.issn2095-9389.2021.02.19.002

雾辅助物联网中公平节能的计算迁移

doi: 10.13374/j.issn2095-9389.2021.02.19.002
基金项目: 国家自然科学基金资助项目(61971235, 61771258);江苏省“333高层次人才培养工程”资助项目;南京邮电大学‘1311’人才计划资助项目;中国博士后科学基金(面上一等)资助项目(2018M630590);网络与信息安全安徽省重点实验室开放课题资助项目(AHNIS2020001);江苏省博士后科研资助计划资助项目( 2021K501C);赛尔网络下一代互联网技术创新资助项目( NGII20190702)
详细信息
    通讯作者:

    E-mail: sgchen@njupt.edu.cn

  • 中图分类号: TP393.0

Fairness and energy co-aware computation offloading for fog-assisted IoT

More Information
  • 摘要: 为了构建绿色且长生命周期的物联网,本文提出了一种雾辅助的公平节能物联网计算迁移方案。首先,基于雾节点计算能力、带宽资源以及融合雾节点能耗公平性的迁移决策的联合考量,构建了一个最小化所有任务完成总能耗的优化问题。其次,提出了基于动量梯度和坐标协同下降的公平性能耗最小化算法用于解决上述混合整数非线性规划问题。该算法基于雾节点的历史平均能耗、距离、计算能力以及剩余能量值设计了公平性指标以获得对于雾节点能耗公平性最优的迁移决策;通过提出的动量梯度与坐标协同下降法,联合优化雾节点分配给各个任务的计算及带宽资源占比,达到最小化任务处理总能耗。最后,仿真结果表明本文方案能够取得较快的收敛速度,且与随机选择和贪婪任务迁移方案两种基准方案相比,本文方案的总能耗最低,雾节点的能耗公平性最高,且网络寿命分别平均提高了23.6%和31.2%。进一步地,该方案在不同雾节点数量以及不同任务大小的环境下仍然能够保持性能优势,体现了方案鲁棒性高的特点。

     

  • 图  1  网络模型

    Figure  1.  Network model

    图  2  动量梯度下降法和传统梯度下降法的总能耗对比

    Figure  2.  Comparison of the total energy consumption between the momentum gradient descent and gradient descent

    图  3  Jain’s公平指数三种方案对比

    Figure  3.  Comparison of the Jain’s fairness index for the three different schemes

    图  4  总能耗的三种方案对比

    Figure  4.  Comparison of the total energy consumption for the three different schemes

    图  5  雾节点总历史平均能耗的三种方案对比

    Figure  5.  Comparison of the total historical average energy consumption for the three different schemes

    图  6  总能耗关于平均距离以及平均任务大小的对比

    Figure  6.  Comparison of the total energy consumption versus the average distance and average task size

    图  7  Jain’s公平指数关于平均距离以及雾节点个数的对比

    Figure  7.  Comparison of the Jain’s fairness index versus the average distance and number of fog nodes

  • [1] Uddin H, Gibson M, Safdar G A, et al. IoT for 5G/B5G applications in smart homes, smart cities, wearables and connected cars // 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). Limassol, 2019: 1
    [2] Sun J, Yao X M, Wang S P, et al. Blockchain-based secure storage and access scheme for electronic medical records in IPFS. IEEE Access, 2020, 8: 59389 doi: 10.1109/ACCESS.2020.2982964
    [3] Chen S G, Zhang S J, Zheng X Y, et al. Layered adaptive compression design for efficient data collection in industrial wireless sensor networks. J Netw Comput Appl, 2019, 129: 37 doi: 10.1016/j.jnca.2019.01.002
    [4] Lyu L J, Nandakumar K, Rubinstein B, et al. PPFA: privacy preserving fog-enabled aggregation in smart grid. IEEE Trans Ind Inform, 2018, 14(8): 3733 doi: 10.1109/TII.2018.2803782
    [5] Chen S G, Yang L, Zhao C X, et al. Double-blockchain assisted secure and anonymous data aggregation for fog-enabled smart grid. Engineering, 2022, 8: 159 doi: 10.1016/j.eng.2020.06.018
    [6] Chen S G, Wang Z H, Zhang H J, et al. Fog-based optimized kronecker-supported compression design for industrial IoT. IEEE Trans Sustain Comput, 2020, 5(1): 95 doi: 10.1109/TSUSC.2019.2906729
    [7] Essalhi S E, El Fenni M R, Chafnaji H. Smart energy management for fog-enabled IoT network // Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications. Rabat, 2020: 1
    [8] Jia M, Yin Z S, Li D B, et al. Toward improved offloading efficiency of data transmission in the IoT-cloud by leveraging secure truncating OFDM. IEEE Int Things J, 2019, 6(3): 4252 doi: 10.1109/JIOT.2018.2875743
    [9] Bonomi F, Milito R, Zhu J, et al. Fog computing and its role in the internet of things // Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing. Helsinki, 2012: 13
    [10] Dastjerdi A V, Buyya R. Fog computing: Helping the Internet of Things realize its potential. Computer, 2016, 49(8): 112 doi: 10.1109/MC.2016.245
    [11] Andreev S, Petrov V, Huang K B, et al. Dense moving fog for intelligent IoT: Key challenges and opportunities. IEEE Commun Mag, 2019, 57(5): 34 doi: 10.1109/MCOM.2019.1800226
    [12] Wang Q, Chen S G. Latency-minimum offloading decision and resource allocation for fog-enabled Internet of Things networks. Trans Emerging Tel Tech, 2020, 31(12): e3880
    [13] Guo K, Sheng M, Quek T Q S, et al. Task offloading and scheduling in fog RAN: A parallel communication and computation perspective. IEEE Wirel Commun Lett, 2020, 9(2): 215 doi: 10.1109/LWC.2019.2948860
    [14] Chen S G, Zheng Y M, Lu W F, et al. Energy-optimal dynamic computation offloading for industrial IoT in fog computing. IEEE Trans Green Commun Netw, 2020, 4(2): 566 doi: 10.1109/TGCN.2019.2960767
    [15] Wu Q, Liu H X, Wang R H, et al. Delay-sensitive task offloading in the 802.11p-based vehicular fog computing systems. IEEE Int Things J, 2019, 7(1): 773
    [16] Chen S G, You Z H, Ruan X K. Privacy and energy co-aware data aggregation computation offloading for fog-assisted IoT networks. IEEE Access, 2020, 8: 72424 doi: 10.1109/ACCESS.2020.2987749
    [17] Mukherjee M, Kumar V, Kumar S, et al. Computation offloading strategy in heterogeneous fog computing with energy and delay constraints // 2020. IEEE International Conference on Communications (ICC), Dublin, 2020: 1
    [18] He X Y, Chen Y, Chai K K. Delay-aware energy efficient computation offloading for energy harvesting enabled fog radio access networks // 2018. IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, 2018: 1
    [19] Zhu X, Chen S G, Chen S L, et al. Energy and delay co-aware computation offloading with deep learning in fog computing networks // 2019. IEEE 38th International Performance Computing and Communications Conference (IPCCC), London, 2019: 1
    [20] Xu M, Wang W, Zhang M, et al. Joint optimization of energy consumption and time delay in energy-constrained fog computing networks // 2019. IEEE Global Communications Conference (GLOBECOM), Waikoloa, 2019: 1
    [21] Orive A, Agirre A, Bilbao J, et al. Passive network state monitoring for dynamic resource management in industry 4.0 fog architectures // 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE). Munich, 2018: 1414
    [22] Zhang G W, Shen F, Yang Y, et al. Fair task offloading among fog nodes in fog computing networks // 2018. IEEE International Conference on Communications (ICC), Kansas, 2018: 1
    [23] Zhang G W, Shen F, Liu Z N, et al. FEMTO: fair and energy-minimized task offloading for fog-enabled IoT networks. IEEE Int Things J, 2019, 6(3): 4388 doi: 10.1109/JIOT.2018.2887229
    [24] Wu C Y, Xu Y Y. Greedy coordinate descent method on non-negative quadratic programming // 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM). Hangzhou, 2020: 1
    [25] Zhang L Y, Zhang P C, Yang J, et al. Aperture shape generation based on gradient descent with momentum. IEEE Access, 2019, 7: 157623 doi: 10.1109/ACCESS.2019.2949871
  • 加载中
图(7)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  125
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-19
  • 网络出版日期:  2022-06-21
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回