• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni55Mn25Ga18Ti2高温形状记忆合金的热循环稳定性

辛燕 王福星

辛燕, 王福星. Ni55Mn25Ga18Ti2高温形状记忆合金的热循环稳定性[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.02.26.001
引用本文: 辛燕, 王福星. Ni55Mn25Ga18Ti2高温形状记忆合金的热循环稳定性[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.02.26.001
XIN Yan, WANG Fu-xing. Thermal cycling stability of Ni55Mn25Ga18Ti2 high-temperature shape memory alloy[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.02.26.001
Citation: XIN Yan, WANG Fu-xing. Thermal cycling stability of Ni55Mn25Ga18Ti2 high-temperature shape memory alloy[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.02.26.001

Ni55Mn25Ga18Ti2高温形状记忆合金的热循环稳定性

doi: 10.13374/j.issn2095-9389.2021.02.26.001
基金项目: 中央高校基本科研业务费专项资金资助项目(2018MS019);国家自然科学基金资助项目(51971092)
详细信息
    通讯作者:

    E-mail: xinyan@ncepu.edu.cn

  • 中图分类号: TG139.6

Thermal cycling stability of Ni55Mn25Ga18Ti2 high-temperature shape memory alloy

More Information
  • 摘要: 选择双相韧化的Ni‒Mn‒Ga‒Ti高温形状记忆合金为研究对象。制备了淬火态Ni55Mn25Ga18Ti2高温形状记忆合金,并对其在室温至480 ℃之间进行高达500次的相变热循环,获得了5, 10, 50, 100和500次热循环态样品。采用X射线衍射、扫描电镜、能谱仪、同步热分析仪及室温压缩等实验方法,研究了淬火态和热循环态合金样品的微观组织、相变行为、力学及记忆性能,进而分析其热循环稳定性。研究结果表明:经500次循环后,Ni55Mn25Ga18Ti2合金相结构和显微组织未发生明显变化,均为由非调制四方结构的板条马氏体相和面心立方富Ni的γ相组成的双相结构;随着循环次数增加,马氏体相变温度几乎不变,逆马氏体相变温度和相变滞后在循环5次后趋于稳定;抗压强度及压缩变形率波动幅度较小;形状记忆性能下降,但形状记忆应变仍保持在1.4%以上;Ni55Mn25Ga18Ti2高温形状记忆合金显示出良好的热循环稳定性。

     

  • 图  1  Ni55Mn25Ga18Ti2合金经N次循环后X射线衍射图谱

    Figure  1.  XRD patterns of the Ni55Mn25Ga18Ti2 alloy after thermal cycles N

    图  2  Ni55Mn25Ga18Ti2热循环不同次数扫描电镜形貌。(a)热循环前淬火态;(b)5次;(c)10次;(d)50次;(e)100次;(f)500次

    Figure  2.  SEM micrographs of Ni55Mn25Ga18Ti2 alloys with different thermal cycles: (a) original state; (b) 5; (c) 10; (d) 50; (e) 100; (f) 500

    图  3  Ni55Mn25Ga18Ti2合金经N次热循环后的差式扫描量热曲线

    Figure  3.  DSC curves of Ni55Mn25Ga18Ti2 alloy after thermal cycles N

    图  4  Ni55Mn25Ga18Ti2合金N次循环态的压缩应力‒应变曲线

    Figure  4.  Compressive stress‒strain curves of the Ni55Mn25Ga18Ti2 alloy after thermal cycles N

    图  5  Ni55Mn25Ga18Ti2合金N次循环态样品压缩至8%卸载的应力‒应变曲线(虚线代表加热至Af温度以上50 ℃所回复的应变)

    Figure  5.  Compressive stress‒strain curves with 8% total strain of the Ni55Mn25Ga18Ti2 alloy after thermal cycles N (Dotted line represents the shape memory strain after heating at 50 ℃ above the Af temperature)

    表  1  Ni55Mn25Ga18Ti2合金经N次循环后马氏体基体和γ相成分

    Table  1.   Compositions of the martensite and γ phase of the Ni55Mn25Ga18Ti2 alloy after thermal cycles N

    Thermal cycles, NMartensite γ phase
    NiMnGaTi NiMnGaTi
    053.727.217.51.6 65.112.211.411.3
    554.926.716.61.8 68.212.09.310.5
    1055.126.516.61.868.710.59.211.6
    5056.325.616.41.769.110.49.111.4
    10055.525.916.81.869.49.78.912.0
    50053.327.817.11.868.89.59.012.7
    下载: 导出CSV

    表  2  N次循环后Ni55Mn25Ga18Ti2合金马氏体相变特征温度

    Table  2.   Martensitic transformation temperatures of the Ni55Mn25Ga18Ti2 alloy after thermal cycles N

    NMs /℃Mp /Mf /℃As/℃Ap /℃Af /℃Hysteresis/℃
    026325123929432734986
    526325023924527429734
    1026725023425327829932
    5027425122924227830430
    10026825322824727930133
    50026524723024627229631
    下载: 导出CSV

    表  3  Ni55Mn25Ga18Ti2合金N次循环态的抗压强度和压缩变形率

    Table  3.   Compressive fracture strength and strain of the Ni55Mn25Ga18Ti2 alloy after thermal cycles N

    NCompressive fracture strength/MPaCompressive fracture strain/%
    0105417.2
    5137722.3
    10132619.4
    50126519.2
    100132817.3
    500152622.8
    下载: 导出CSV

    表  4  Ni55Mn25Ga18Ti2合金N次循环态压缩至8%预应变时的形状记忆性能

    Table  4.   Shape memory properties of the Ni55Mn25Ga18Ti2 alloy compressed to 8% pre-strain after thermal cycles N

    NPre-strain/%Shape memory strain/%Recovery ratio/%
    082.264.7
    581.642.1
    1081.443.8
    5081.443.8
    10081.644.4
    50081.650.0
    下载: 导出CSV
  • [1] Mohd Jani J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Mater Des, 2014, 56: 1078 doi: 10.1016/j.matdes.2013.11.084
    [2] He Z R, Zhou C, Liu L, et al. Research progress of shape memory alloys and their applications. Foundry Technol, 2017, 38(2): 257

    贺志荣, 周超, 刘琳, 等. 形状记忆合金及其应用研究进展. 铸造技术, 2017, 38(2):257
    [3] Ma J, Karaman I, Noebe R D. High temperature shape memory alloys. Int Mater Rev, 2010, 55(5): 257 doi: 10.1179/095066010X12646898728363
    [4] Zuo S G, Jin X J, Jin M J. Research progress in high temperature shape memory alloys. Mater Mech Eng, 2014, 38(1): 1

    左舜贵, 金学军, 金明江. 高温形状记忆合金的研究进展. 机械工程材料, 2014, 38(1):1
    [5] Van Humbeeck J. Shape memory alloys with high transformation temperatures. Mater Res Bull, 2012, 47(10): 2966 doi: 10.1016/j.materresbull.2012.04.118
    [6] Rehman S U, Khan M, Khan A N, et al. Quaternary alloying of copper with Ti50Ni25Pd25 high temperature shape memory alloys. Mater Sci Eng A, 2019, 763: 138148 doi: 10.1016/j.msea.2019.138148
    [7] Cai W, Meng X L, Zhao X Q, et al. Martensitic transformation and shape memory effect of Ti‒Ni based high temperature shape memory alloys. Mater China, 2012, 31(12): 40

    蔡伟, 孟祥龙, 赵新青, 等. TiNi基高温形状记忆合金的马氏体相变与形状记忆效应. 中国材料进展, 2012, 31(12):40
    [8] Tong Y X, Fan X M, Shuitcev A V, et al. Effects of Sc addition and aging on microstructure and martensitic transformation of Ni-rich NiTiHfSc high temperature shape memory alloys. J Alloys Compd, 2020, 845: 156331 doi: 10.1016/j.jallcom.2020.156331
    [9] Feng Z W, Cui Y, Shang Z Y, et al. Development of NiTiZr high temperature shape memory alloys. Mater Rev, 2016, 30(Sup 2): 616

    冯昭伟, 崔跃, 尚再艳, 等. 镍钛锆高温形状记忆合金的研究进展. 材料导报, 2016, 30(增刊2): 616
    [10] López-Ferreño I, Gómez-Cortés J F, Breczewski T, et al. High-temperature shape memory alloys based on the Cu‒Al‒Ni system: Design and thermomechanical characterization. J Mater Res Technol, 2020, 9(5): 9972 doi: 10.1016/j.jmrt.2020.07.002
    [11] Xu H B, Li Y, Jiang C B. Ni‒Mn‒Ga high-temperature shape memory alloys. Mater Sci Eng A, 2006, 438-440: 1065 doi: 10.1016/j.msea.2006.02.187
    [12] Pérez-Checa A, Feuchtwanger J, Barandiaran J M, et al. Ni‒Mn‒Ga high temperature shape memory alloys: Function stability in β and β+γ regions. J Alloys Compd, 2018, 741: 148 doi: 10.1016/j.jallcom.2018.01.068
    [13] Manzoni A M, Denquin A, Vermaut P, et al. Constrained hierarchical twinning in Ru-based high temperature shape memory alloys. Acta Mater, 2016, 111: 283 doi: 10.1016/j.actamat.2016.03.067
    [14] Li Q Q, Li Y, Ma Y H. Research progress of titanium-based high-temperature shape memory alloy. Mater Rep, 2020, 34(3): 148

    李启泉, 李岩, 马悦辉. 钛基高温形状记忆合金进展综述. 材料导报, 2020, 34(3):148
    [15] Buenconsejo P J S, Kim H Y, Hosoda H, et al. Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Mater, 2009, 57(4): 1068 doi: 10.1016/j.actamat.2008.10.041
    [16] Li Y, Xin Y, Chai L, et al. Microstructures and shape memory characteristics of dual-phase Co–Ni–Ga high-temperature shape memory alloys. Acta Mater, 2010, 58(10): 3655 doi: 10.1016/j.actamat.2010.03.001
    [17] Jiang H X, Yang S Y, Wang C P, et al. Martensitic transformation and shape memory effects in Co‒V‒Al alloys at high temperatures. J Alloys Compd, 2019, 786: 648 doi: 10.1016/j.jallcom.2019.01.216
    [18] Söderberg O, Aaltio I, Ge Y, et al. Ni‒Mn‒Ga multifunctional compounds. Mater Sci Eng A, 2008, 481-482: 80 doi: 10.1016/j.msea.2006.12.191
    [19] Karaca H E, Karaman I, Basaran B, et al. Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater, 2006, 54(1): 233 doi: 10.1016/j.actamat.2005.09.004
    [20] Ma Y Q, Jiang C B, Li Y, et al. Study of Ni50+xMn25Ga25−x (x=2‒11) as high-temperature shape-memory alloys. Acta Mater, 2007, 55(5): 1533 doi: 10.1016/j.actamat.2006.10.014
    [21] Xu H B, Ma Y Q, Jiang C B. A high-temperature shape-memory alloy Ni54Mn25Ga21. Appl Phys Lett, 2003, 82(19): 3206 doi: 10.1063/1.1572540
    [22] Chernenko V A, Villa E, Besseghini S, et al. Giant two-way shape memory effect in high-temperature Ni‒Mn‒Ga single crystal. Phys Procedia, 2010, 10: 94 doi: 10.1016/j.phpro.2010.11.081
    [23] Chernenko V A, L’vov V, Pons J, et al. Superelasticity in high-temperature Ni‒Mn‒Ga alloys. J Appl Phys, 2003, 93(5): 2394 doi: 10.1063/1.1539532
    [24] Ma Y Q, Jiang C B, Feng G, et al. Thermal stability of the Ni54Mn25Ga21 Heusler alloy with high temperature transformation. Scr Mater, 2003, 48(4): 365 doi: 10.1016/S1359-6462(02)00450-5
    [25] Li Y, Xin Y, Jiang C B, et al. Shape memory effect of grain refined Ni54Mn25Ga21 alloy with high transformation temperature. Scr Mater, 2004, 51(9): 849 doi: 10.1016/j.scriptamat.2004.07.010
    [26] Xin Y, Chai L. Effect of Fe addition on the martensitic transformation behavior and mechanical properties of Ni‒Mn‒Ga shape memory alloys. J Univ Sci Technol Beijing, 2013, 35(8): 1027

    辛燕, 柴亮. Fe对Ni‒Mn‒Ga形状记忆合金相变和力学性能的影响. 北京科技大学学报, 2013, 35(8):1027
    [27] Ma Y Q, Yang S Y, Liu Y, et al. The ductility and shape-memory properties of Ni‒Mn‒Co‒Ga high-temperature shape-memory alloys. Acta Mater, 2009, 57(11): 3232 doi: 10.1016/j.actamat.2009.03.025
    [28] Ma Y Q, Lai S L, Yang S Y, et al. Ni56Mn25-xCrxGa19 (x=0, 2, 4, 6) high temperature shape memory alloys. Trans Nonferrous Met Soc China, 2011, 21(1): 96 doi: 10.1016/S1003-6326(11)60683-3
    [29] Xin Y, Zhou Y. Martensitic transformation and mechanical properties of NiMnGaV high-temperature shape memory alloys. Intermetallics, 2016, 73: 50 doi: 10.1016/j.intermet.2016.03.005
    [30] Ma Y Q, Yang S Y, Jin W J, et al. Ni56Mn25−xCuxGa19 (x=0, 1, 2, 4, 8) high-temperature shape-memory alloys. J Alloys Compd, 2009, 471(1-2): 570 doi: 10.1016/j.jallcom.2008.07.016
    [31] Zhang X, Liu Q S. A dual-phase Ni‒Mn‒Ga‒Gd high-temperature shape memory alloy with large shape recovery ratio. Rare Met Mater Eng, 2017, 46(9): 2375 doi: 10.1016/S1875-5372(17)30200-X
    [32] Dong G F, Li X H, Li Y Q, et al. Effect of the Ti content on microstructure and properties of Ni53Mn23.5Ga23.5-xTix ferromagnetic shape memory alloy. Rare Met Mater Eng, 2010, 39(10): 1785

    董桂馥, 李学慧, 李艳琴, 等. Ti含量对Ni53Mn23.5Ga23.5-xTix铁磁性形状记忆合金组织和性能的影响. 稀有金属材料与工程, 2010, 39(10):1785
    [33] Dong G F, Cai W, Gao Z Y. Microstructure and martensitic transformation of Ni‒Mn‒Ga‒Ti ferromagnetic shape memory alloys. J Alloys Compd, 2008, 465(1-2): 173 doi: 10.1016/j.jallcom.2007.10.138
    [34] Dong G F, Gao Z Y, Tan C L, et al. Phase transformation and magnetic properties of Ni‒Mn‒Ga‒Ti ferromagnetic shape memory alloys. J Alloys Compd, 2010, 508(1): 47 doi: 10.1016/j.jallcom.2010.04.157
    [35] Bai J, Yang Z, Zhao C Y, et al. Martensitic transformation and magnetic properties of NiMnGaTi ferromagnetic shape memory alloy. J Northeast Univ (Nat Sci), 2019, 40(10): 1398

    白静, 杨禛, 赵晨羽, 等. NiMnGaTi铁磁形状记忆合金的马氏体相变和磁性能. 东北大学学报(自然科学版), 2019, 40(10):1398
    [36] Wang L. Research on Microstructure of NiMnGa-Based Shape Memory Alloys [Dissertation]. Beijing: North China Electric Power University, 2018

    王磊. NiMnGa基形状记忆合金的显微组织研究[学位论文]. 北京: 华北电力大学(北京), 2018
    [37] Zhang X, Sui J H, Yang Z Y, et al. Thermal stability of Ni54Mn25Ga20.9Gd0.1 high-temperature shape memory alloy with large reversible strain. Mater Lett, 2014, 123: 250 doi: 10.1016/j.matlet.2014.02.088
    [38] Jia H D, Zhou Z J. Research progress in microstructure and service performance of high-strength and corrosion-resistant ODS−FeCrAl alloy, Chin J Eng. DOI: 10.13374/j.issn2095-9389.2020.12.17.005

    贾皓东, 周张健. 高强度耐腐蚀ODS−FeCrAl 合金微观结构、力学性能研究进展. 工程科学学报. DOI: 10.13374/j.issn2095-9389.2020.12.17.005
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  210
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-26
  • 网络出版日期:  2021-04-07

目录

    /

    返回文章
    返回