Chloride retention mechanism of coral sand cement stones modified by graphene oxide
-
摘要: 珊瑚砂地基远离大陆,在海洋环境下通过注浆或搅拌桩等工艺注入极少掺量氧化石墨烯(GO)的水泥浆液改善珊瑚砂地基,可以大幅提升珊瑚砂水泥结石体阻滞氯离子渗透性能。本文通过快速氯离子迁移试验(RCM方法)、扫描电镜(SEM)实验和Image-Pro Plus图像处理等,在对比分析河砂与珊瑚砂颗粒形态差异以及掺入GO前后微观结构变化规律的基础上,揭示了GO改性珊瑚砂水泥结石体阻滞氯离子渗透的作用机理。试验结果表明:颗粒棱角度高、形状不规则、多孔且含有内孔隙等原因是相同工艺条件下珊瑚砂水泥结石体阻滞氯离子渗透性远低于河砂水泥结石体的主要原因;当掺入质量分数0.02%的GO后,28 d和56 d的珊瑚砂水泥结石体阻滞氯离子渗透性能指标提升程度最高(39.43%与48.93%),并与相同工艺条件下无添加GO的普通河砂水泥结石体指标相近;珊瑚砂水泥结石体阻滞氯离子渗透性能提升程度与GO掺量有关,两者先呈正相关而后呈负相关,0.02%质量分数为本文最佳试验掺入量;调控水泥水化产物生成规整有序的水化晶体形状,改善界面过渡区的形貌,填充内部裂纹的空间,修复孔隙的形貌特征是掺入GO影响珊瑚砂水泥结石体抗氯离子渗透性的主要原因。Abstract: In the marine environment far away from the mainland, the coral sand foundation can be improved by injecting the cement grout with a very small amount of graphene oxide (GO) through grouting or mixing piles and other processes, which can greatly increase the stone body’s ability to block chloride ion penetration. Based on the comparative analysis of the difference in the particle morphology of river sand and coral sand and changes in hydration products and microstructure before and after GO incorporation, this study employed a rapid chloride ion migration test, scanning electron microscope experiment, and Image-Pro Plus image processing to reveal the mechanism of the modified coral sand cement stone body blocking permeation by chloride. The result reveals that high particle angles, irregular shapes, and porous and internal pores are the main reasons for the lower coral sand cement stone body than the river sand cement stone body in blocking chloride ion permeability under the same process conditions. After mixing 0.02% (mass fraction) GO, 28 d and 56 d coral sand cement stones have the highest degree of improvement in blocking chloride ion permeability (39.43% and 48.93%) and are similar to those of ordinary river sand cement stones without GO addition under the same process conditions. The coral sand cement stone body’s antichloride ion penetration performance improvement is related to the amount of GO. The two are first positively correlated and then negatively correlated. 0.02% is the best mix-up measure after the experiment in the assay. Regulating cement hydration products to form a regular and orderly hydrated crystal shape, improving the morphology of the interface transition zone, filling the space of internal cracks, and repairing the morphological characteristics of the pores are the main reasons that allow the incorporation of GO to affect the resistance of coral sand cement stones to chloride ion permeability.
-
Key words:
- coral sand /
- stone body /
- graphene oxide /
- chloride ion penetration /
- microstructure /
- mechanism of retention
-
图 7 不同GO掺量28 d试块的SEM图.(a)0% GO,1000×,河砂试块;(b)0.03% GO,1000×,河砂试块;(c)0% GO,1000×,珊瑚砂试块;(d)0.02% GO,1000×,珊瑚砂试块;(e)0% GO,5000×,珊瑚砂试块;(f)0.02% GO,5000×,珊瑚砂试块
Figure 7. SEM image of the 28 d coral sand specimen with different GO mass fractions: (a) 0% GO, 1000×, river sand cement stones; (b) 0.03% GO, 1000×, river sand cement stones; (c) 0% GO, 1000×, coral sand cement stones; (d) 0.02% GO, 1000×, coral sand cement stones; (e) 0% GO, 5000×, coral sand cement stones; (f) 0.02% GO, 5000×, coral sand cement stones
图 8 不同GO质量分数的珊瑚砂试块和河砂试块SEM图 (a)0% GO珊瑚砂试块;(b)0% GO河砂试块;(c)0.02% GO珊瑚砂试块;(d)0.03% GO河砂试块
Figure 8. SEM images of the coral sand specimen and river sand specimen with different GO mass fractions: (a) 0% GO coral sand specimen; (b) 0% GO river sand specimen; (c) 0.02% GO coral sand specimen; (d) 0.03% GO river sand specimen
图 9 不同GO质量分数的珊瑚砂试块和河砂试块SEM图.(a)0% GO珊瑚砂试块;(b)0% GO河砂试块;(c)0.02% GO珊瑚砂试块;(d)0.03% GO河砂试块
Figure 9. SEM images of the coral sand specimen and river sand specimen with different GO mass fractions: (a) 0% GO coral sand specimen; (b) 0% GO river sand specimen; (c) 0.02% GO coral sand specimen; (d) 0.03% GO river sand specimen
表 1 水泥的物理及力学性能指标
Table 1. Physical and mechanical properties of cement
Setting times/min Stability flexural strengths/MPa Compressive strengths /
MPaInitial Final 3-day 28-day 3-day 28-day 180 240 6.6 8.9 32.7 56.8 表 2 28 d结石体内部平均孔隙直径
Table 2. Pore diameter of the 28 d stone body
Specimen Diameter of pore /μm Specimen Diameter of pore /μm CS+28+0 14.41 RS+28+0 11.87 CS+28+1 13.02 RS+28+1 10.65 CS+28+2 12.32 RS+28+2 10.22 CS+28+3 13.33 RS+28+3 9.67 CS+28+4 13.83 RS+28+4 11.75 -
参考文献
[1] Wang R, Wu W J. Exploration and research on engineering geological properties of coral reefs—engaged in coral reef research for 30 years. J Eng Geol, 2019, 27(1): 202汪稔, 吴文娟. 珊瑚礁岩土工程地质的探索与研究——从事珊瑚礁研究30年. 工程地质学报, 2019, 27(1):202 [2] Ren H Q, Li X P, Long Z L. Theoretical and technical exploration of long-term safety and sustainable development of south island reef project // Proceedings of the 6th National Engineering Safety and Protection Conference. Xiangtan, 2018: 329任辉启, 李新平, 龙志林. 南海岛礁工程长期安全与可持续发展保障理论及技术探索//第六届全国工程安全与防护学术会议论文集. 湘潭, 2018: 329 [3] Han X, Feng J J, Shao Y X, et al. Influence of a steel slag powder-ground fly ash composite supplementary cementitious material on the chloride and sulphate resistance of mass concrete. Powder Technol, 2020, 370: 176 doi: 10.1016/j.powtec.2020.05.015 [4] Feng L, Zhao P, Wang Z J, et al. Improvement of mechanical properties and chloride ion penetration resistance of cement pastes with the addition of pre-dispersed silica fume. Constr Build Mater, 2018, 182: 483 doi: 10.1016/j.conbuildmat.2018.06.053 [5] Wang D Z, Zhou X M, Fu B, et al. Chloride ion penetration resistance of concrete containing fly ash and silica fume against combined freezing-thawing and chloride attack. Constr Build Mater, 2018, 169: 740 doi: 10.1016/j.conbuildmat.2018.03.038 [6] He Y B, Chen B X, Liu S M, et al. Study on resistance of chloride ion penetration in fly ash/silicon ash polypropylene fiber concrete under preloading condition. J Hunan Univ Nat Sci, 2017, 44(3): 97何亚伯, 陈保勋, 刘素梅, 等. 预加荷载作用下粉煤灰/硅灰纤维混凝土氯离子渗透性能研究. 湖南大学学报(自然科学版), 2017, 44(3):97 [7] Zhu Y, Mei H, Chen J J. Experimental study on mineral admixtures and additives on chloride ion penetration resistance of concrete. Bull Chin Ceram Soc, 2016, 35(11): 3844朱燕, 梅华, 陈佳佳. 矿物掺合料与化学外加剂影响混凝土抗氯离子渗透性的试验研究. 硅酸盐通报, 2016, 35(11):3844 [8] Mohammed A, Sanjayan J G, Duan W H, et al. Incorporating graphene oxide in cement composites: A study of transport properties. Constr Build Mater, 2015, 84: 341 doi: 10.1016/j.conbuildmat.2015.01.083 [9] Lv S H, Zhang J, Zhu L L, et al. Preparation of cement composites with ordered microstructures via doping with graphene oxide nanosheets and an investigation of their strength and durability. Materials, 2016, 9(11): 924 doi: 10.3390/ma9110924 [10] Li X G, Ren Z F, Xu P H, et al. Research on mechanical properties and durability of graphene oxide composite PVA fiber reinforced cement-based material. Bull Chin Ceram Soc, 2018, 37(1): 245李相国, 任钊锋, 徐朋辉, 等. 氧化石墨烯复合PVA纤维增强水泥基材料的力学性能及耐久性研究. 硅酸盐通报, 2018, 37(1):245 [11] Du T. Effect of Graphene Oxide on Properties of Cement-Based Composite [Dissertation]. Harbin: Harbin Institute of Technology, 2014杜涛. 氧化石墨烯水泥基复合材料性能研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2014 [12] Wang J. Study of the Effect of Graphene Oxide on Cement Performance and Its Mechanism [Dissertation]. Beijing: Beijing University of Civil Engineering and Architecture, 2017王健. 氧化石墨烯对水泥的性能影响及作用机理研究[学位论文]. 北京: 北京建筑大学, 2017 [13] Shamsaei E, de Souza F B, Yao X P, et al. Graphene-based nanosheets for stronger and more durable concrete: A review. Constr Build Mater, 2018, 183: 642 doi: 10.1016/j.conbuildmat.2018.06.201 [14] Zhu Y W, Ji H X, Cheng H M, et al. Mass production and industrial applications of graphene materials. Natl Sci Rev, 2018, 5(1): 90 doi: 10.1093/nsr/nwx055 [15] Kauling A P, Seefeldt A T, Pisoni D P, et al. The worldwide graphene flake production. Adv Mater, 2018, 30(44): 1803784 doi: 10.1002/adma.201803784 [16] Zhu C Q, Chen H Y, Meng Q S, et al. Microscopic characterization of intra-pore structures of calcareous sands. Rock Soil Mech, 2014, 35(7): 1831朱长歧, 陈海洋, 孟庆山, 等. 钙质砂颗粒内孔隙的结构特征分析. 岩土力学, 2014, 35(7):1831 [17] Chen B, Hu J M. Fractal behavior of coral sand during creep. Front Earth Sci, 2020, 8: 134 doi: 10.3389/feart.2020.00134 [18] Lv Y, Li F, Liu Y W, et al. Comparative study of coral sand and silica sand in creep under general stress states. Can Geotech J, 2017, 54(11): 1601 doi: 10.1139/cgj-2016-0295 [19] Chen B, Chao D J, Wu W J, et al. Study on creep mechanism of coral sand based on particle breakage evolution law. J Vibroengineering, 2019, 21(4): 1201 doi: 10.21595/jve.2019.20625 [20] Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater, 2010, 22(35): 3906 doi: 10.1002/adma.201001068 [21] Kim J, Cote L J, Kim F, et al. Graphene oxide sheets at interfaces. J Am Chem Soc, 2010, 132(23): 8180 doi: 10.1021/ja102777p [22] Gong K, Pan Z, Korayem A H, et al. Reinforcing effects of graphene oxide on Portland cement paste. J Mater Civ Eng, 2015, 27(2): A4014010 doi: 10.1061/(ASCE)MT.1943-5533.0001125 [23] Ma Y F, Zheng Y X, Zhu Y W. Towards industrialization of graphene oxide. Sci China Mater, 2020, 63(10): 1861 doi: 10.1007/s40843-019-9462-9 [24] Lv S H, Liu J J, Sun T, et al. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process. Constr Build Mater, 2014, 64: 231 doi: 10.1016/j.conbuildmat.2014.04.061 [25] Lv S H, Ma Y J, Qiu C C, et al. Regulation of GO on cement hydration crystals and its toughening effect. Mag Concr Res, 2013, 65(20): 1246 doi: 10.1680/macr.13.00190 [26] Lv S H, Ting S, Liu J J, et al. Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness. Cryst Eng Comm, 2014, 16(36): 8508 doi: 10.1039/C4CE00684D [27] Birenboim M, Nadiv R, Alatawna A, et al. Reinforcement and workability aspects of graphene-oxide-reinforced cement nanocomposites. Compos B Eng, 2019, 161: 68 doi: 10.1016/j.compositesb.2018.10.030 [28] Cheng S K, Shui Z H, Sun T, et al. Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete. Appl Clay Sci, 2017, 141: 111 doi: 10.1016/j.clay.2017.02.026 [29] Kolver K, Jensen O M. Internal curing of concrete-state-of-the-art report of RILEM Technical Committee 196-ICC[R/OL]. RILEM Publications SARL (2007)[2021-03-06].https://www.rilem.net/publication/publication/105 [30] Fang Y. The Concrete Resistance to Chloride Ion Permeability Test Method Research and Engineering Case Analysis [Dissertation]. Hangzhou: Zhejiang University, 2018方毅. 混凝土抗氯离子渗透性能试验方法研究及工程案例分析[学位论文]. 杭州: 浙江大学, 2018 [31] Han J G, Li K F. Adaptability of the evaluation methods of concrete anti-chloride penetration ability. J Build Mater, 2015, 18(4): 704 doi: 10.3969/j.issn.1007-9629.2015.04.029韩建国, 李克非. 混凝土抗氯离子渗透能力测试方法的适用性. 建筑材料学报, 2015, 18(4):704 doi: 10.3969/j.issn.1007-9629.2015.04.029 [32] Yang L F, Zhou M, Chen Z. Quantitative analysis and design for durability of marine concrete structures. China Civ Eng J, 2014, 47(10): 70 doi: 10.15951/j.tmgcxb.2014.10.023杨绿峰, 周明, 陈正. 海洋混凝土结构耐久性定量分析与设计. 土木工程学报, 2014, 47(10):70 doi: 10.15951/j.tmgcxb.2014.10.023 [33] Yang H, Liu H F, Sun S, et al. Influence of fly ash and desert sand on the chloride permeability of concrete. Concrete, 2019(12): 95杨浩, 刘海峰, 孙帅, 等. 粉煤灰及沙漠砂对混凝土抗氯离子渗透性能影响. 混凝土, 2019(12):95 [34] Yuan R Z. Cementitious Materials Science. Wuhan: Wuhan University of Technology Press, 1996袁润章. 胶凝材料学. 武汉: 武汉理工大学出版社, 1996 [35] Lü S H, Sun T, Liu J J, et al. Toughening effect and mechanism of graphene oxide nanosheets on cement matrix composites. Acta Mater Compos Sin, 2014, 31(3): 644 doi: 10.13801/j.cnki.fhclxb.2014.03.016吕生华, 孙婷, 刘晶晶, 等. 氧化石墨烯纳米片层对水泥基复合材料的增韧效果及作用机制. 复合材料学报, 2014, 31(3):644 doi: 10.13801/j.cnki.fhclxb.2014.03.016 [36] Djerbi A, Bonnet S, Khelidj A, et al. Influence of traversing crack on chloride diffusion into concrete. Cem Concr Res, 2008, 38(6): 877 doi: 10.1016/j.cemconres.2007.10.007 [37] Jang S Y, Kim B S, Oh B H. Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests. Cem Concr Res, 2011, 41(1): 9 doi: 10.1016/j.cemconres.2010.08.018 [38] Ismail M, Toumi A, François R, et al. Effect of crack opening on the local diffusion of chloride in cracked mortar samples. Cem Concr Res, 2008, 38(8-9): 1106 doi: 10.1016/j.cemconres.2008.03.009 -