• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续驱动摩擦焊接技术的研究与工程应用

张晗 朱志明

张晗, 朱志明. 连续驱动摩擦焊接技术的研究与工程应用[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.03.13.001
引用本文: 张晗, 朱志明. 连续驱动摩擦焊接技术的研究与工程应用[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.03.13.001
ZHANG Han, ZHU Zhi-ming. Research and engineering application of continuous-drive friction welding[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.03.13.001
Citation: ZHANG Han, ZHU Zhi-ming. Research and engineering application of continuous-drive friction welding[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.03.13.001

连续驱动摩擦焊接技术的研究与工程应用

doi: 10.13374/j.issn2095-9389.2021.03.13.001
基金项目: 国家自然科学基金资助项目(51775301,51075231)
详细信息
    通讯作者:

    E-mail: zzmdme@tsinghua.edu.cn

  • 中图分类号: TG453

Research and engineering application of continuous-drive friction welding

More Information
  • 摘要: 在对摩擦焊接进行分类并简要说明的基础上,对连续驱动摩擦焊接技术的研究发展和应用现状进行了全面梳理和深入剖析,涉及焊接工艺过程特征和主要工艺参数、工艺探索及工艺参数对接头性能的影响、数值分析和模拟及工艺参数优化、异种金属和非金属材料摩擦焊接与工艺创新、实际工程应用和焊接设备等方面。从摩擦焊接技术的潜在应用、核心科学问题、新型摩擦焊接设备的研发、数值分析和模拟、与新兴技术的结合等方面,对连续驱动摩擦焊接技术进行了评述和探讨。

     

  • 图  1  摩擦焊接技术分类

    Figure  1.  Classification of the friction welding technology

    图  2  连续驱动摩擦焊。(a)原理示意图;(b)工艺参数变化规律

    Figure  2.  Continuous-drive friction welding: (a) schematic diagram; (b) change of the process parameters

    图  3  不同转速下的AA6061-T6铝合金CDFW接头界面形态演变[12]

    Figure  3.  Evolution of the AA6061-T6 alloy CDFW joint interface morphologies under different rotation speeds[12]

    图  4  不同转速下的GH4169 CDFW接头飞边形貌演变[11]

    Figure  4.  Evolution of the flash appearance of the GH4169 CDFW joint with different rotation speeds[11]

    图  5  5A33铝合金和AZ31B镁合金CDFW接头在不同摩擦时间下的宏观形貌[13]

    Figure  5.  Optical macrographs of the 5A33 Al alloy to the AZ31B Mg alloy CDFW joints at different friction time[13]

    图  6  不同摩擦时间的AISI 304L和WC‒Co金属陶瓷的CDFW接头形态[24]:(a)4 s;(b)6 s;(c)8 s;(d)10 s;(e)12 s

    Figure  6.  Photos of the AISI 304L to WC‒Co cermet CDFW joints obtained using different friction times[24]: (a) 4 s; (b) 6 s; (c) 8 s; (d) 10 s; (e) 12 s

    图  7  AA5052与LCS的CDFW接头形貌(a)及对应的摩擦扭矩曲线(b)[26]

    Figure  7.  Joint morphology (a) and friction torque curve (b) during the CDFW of AA5052 to LCS[26]

    图  8  工艺参数对接头形态的影响[28]。(a)FT=4 s, UP=120 MPa;(b)FT=4 s, UP=220 MPa;(c)FT=6 s, UP=220 MPa

    Figure  8.  Influence of the process parameters on the joint morphology[28]: (a) FT=4 s, UP=120 MPa; (b) FT=4 s, UP=220 MPa; (c) FT=6 s, UP=220 MPa

    图  9  GH4169 CDFW有限元分析[30]。(a)工件的二维轴对称和网格模型;(b)温度场;(c)接头形貌

    Figure  9.  Finite element (FE) models of the GH4169 CDFW[30]: (a) 2D axisymmetric model and meshing of the workpiece; (b) temperature contour; (c) joint morphology

    图  10  AISI 1020和ASTM A536的CDFW及焊接工艺基本流程[32]

    Figure  10.  Experimental setup for AISI 1020 to ASTM A536 CDFW with the basic steps in the welding process[32]

    图  11  聚氯乙烯与聚甲基丙烯酸甲酯CDFW焊缝拉伸试验断面微观组织形态对比(Fud—中心区,Fpd—周边区,Fpl—中间部分)。(a)未使用溶剂;(b)添加蒸馏水

    Figure  11.  Comparison of the microstructure morphologies of the CDFW joints after the tensile test (Fud—central zone, Fpd—middle section, Fpl—peripheral zone): (a) without solvent treatment; (b) treated with distilled water

    图  12  中间层添加及CDFW示意图[35]。(a)为不锈钢工件电沉积添加镍中间层;(b)带有镍中间层的CDFW

    Figure  12.  Schematic of the interlayer insertion and the CDFW[35]: (a) insertion of the Ni interlayer on the stainless-steel substrate through the electrodeposition process; (b) CDFW with the Ni interlayer

    图  13  不同温度条件下的高频感应预加热CDFW连接Al和Cu接头断面结构[36]

    Figure  13.  Cross-section of the Al to Cu CDFW joints with different pre-heating temperatures by the high-frequency induction pre-heating method[36]

    图  14  45#钢CDFW接头形貌[37]

    Figure  14.  Macrographs of the 45# steel CDFW joint[37]

    图  15  薄壁管件CDFW[38]。(a)焊机结构;(b)接头形貌

    Figure  15.  Thin-walled pipe CDFW[38]: (a) welder structure; (b) joint morphology

    图  16  皮质骨螺钉CDFW[39]:(a)接头形貌;(b)皮质骨螺钉设计结构

    Figure  16.  Cortical bone screw CDFW[39]: (a) joint morphology; (b) schematic design of cortial bone screws

  • [1] Qi S A, Liu C D. Friction welding and its technical development. Machinery, 2003, 41(11): 24 doi: 10.3969/j.issn.1000-4998.2003.11.008

    齐少安, 刘承东. 摩擦焊接及其工艺发展. 机械制造, 2003, 41(11):24 doi: 10.3969/j.issn.1000-4998.2003.11.008
    [2] Li W Y, Vairis A, Preuss M, et al. Linear and rotary friction welding review. Int Mater Rev, 2016, 61(2): 71 doi: 10.1080/09506608.2015.1109214
    [3] Akinlabi E T, Mahamood R M. Solid-state Welding: Friction and Friction Stir Welding Processes. Switzerland: Springer International Publishing, 2020
    [4] Liang H, Zhang Z. Application of inertial friction welding on aeroengine. J Mater Eng, 1992, 20(2): 48

    梁海, 张峥. 惯性摩擦焊在航空发动机上的应用. 材料工程, 1992, 20(2):48
    [5] Nicholas E D. Friction processing technologies. Weld World, 2003, 47(11-12): 2 doi: 10.1007/BF03266402
    [6] Chen Z H. Analysis of friction processing technology and its engineering applications. Electr Weld Mach, 2011, 41(8): 101 doi: 10.3969/j.issn.1001-2303.2011.08.020

    陈忠海. 摩擦焊接技术及其工程应用. 电焊机, 2011, 41(8):101 doi: 10.3969/j.issn.1001-2303.2011.08.020
    [7] Wang Y, Xiong B Q, Li Z H, et al. Microstructure and properties of friction stir welded joints for Al‒Zn‒Mg‒Cu‒Zr‒(Sc) alloys. Chin J Eng, 2020, 42(5): 612

    王宇, 熊柏青, 李志辉, 等. Al‒Zn‒Mg‒Cu‒Zr‒(Sc)合金搅拌摩擦焊接头组织和性能. 工程科学学报, 2020, 42(5):612
    [8] Zhao X Z, Du S G, Hou D X. Status and perspectives of continues drive friction welding machine. New Technol New Process, 2014(2): 1 doi: 10.3969/j.issn.1003-5311.2014.02.001

    赵鑫哲, 杜随更, 侯东祥. 连续驱动摩擦焊机的研究现状和展望. 新技术新工艺, 2014(2):1 doi: 10.3969/j.issn.1003-5311.2014.02.001
    [9] Gao J Z, Xu B, Xu X F, et al. Applications of friction welding in jointing of petroleum tubular goods. Petroleum Tubul Goods Instrum, 2019, 5(6): 1

    高建忠, 徐斌, 许晓锋, 等. 摩擦焊技术在石油管材连接中的应用展望. 石油管材与仪器, 2019, 5(6):1
    [10] Wang Z P, Zhong Y, Zhang L J, et al. Friction weldability of TiAl to NiCr20TiAl. Electr Weld Mach, 2004, 34(9): 35 doi: 10.3969/j.issn.1001-2303.2004.09.012

    王忠平, 钟燕, 张立军, 等. TiAl金属间化合物与NiCr20TiAl摩擦焊接性分析. 电焊机, 2004, 34(9):35 doi: 10.3969/j.issn.1001-2303.2004.09.012
    [11] Jin F, Xiong J T, Shi J M, et al. Flash formation mechanism during rotary friction welding of GH4169 superalloy. Mater Rep, 2020, 34(10): 10144 doi: 10.11896/cldb.20030095

    金峰, 熊江涛, 石俊秒, 等. GH4169旋转摩擦焊飞边成形机理研究. 材料导报, 2020, 34(10):10144 doi: 10.11896/cldb.20030095
    [12] Li X, Li J L, Jin F, et al. Effect of rotation speed on friction behavior of rotary friction welding of AA6061-T6 aluminum alloy. Weld World, 2018, 62(5): 923 doi: 10.1007/s40194-018-0601-y
    [13] Liang Z D, Qin G L, Geng P H, et al. Continuous drive friction welding of 5A33 Al alloy to AZ31B Mg alloy. J Manuf Process, 2017, 25: 153 doi: 10.1016/j.jmapro.2016.11.004
    [14] Liang Z D, Qin G L, Wang L Y, et al. Microstructural characterization and mechanical properties of dissimilar friction welding of 1060 aluminum to AZ31B magnesium alloy. Mater Sci Eng A, 2015, 645: 170 doi: 10.1016/j.msea.2015.07.089
    [15] Liu Y. Design of Hydraulic Servo Control System for Phase Friction Welding [Dissertation]. Harbin: Harbin Engineering University, 2013

    刘颖. 相位摩擦焊的液压伺服系统设计[学位论文]. 哈尔滨: 哈尔滨工程大学, 2013
    [16] Tu H Y. Research and Development of Control System of Continuous Driven Friction Welding Machine [Dissertation]. Xi'an: Northwestern Polytechnical University, 2007

    涂昊昀. 连续驱动摩擦焊机控制系统的研究与开发[学位论文]. 西安: 西北工业大学, 2007
    [17] Du S G. New development in friction welding technology: Part I. Weld Technol, 2000, 29(3): 49 doi: 10.3969/j.issn.1002-025X.2000.03.028

    杜随更. 摩擦焊接工艺新发展(一). 焊接技术, 2000, 29(3):49 doi: 10.3969/j.issn.1002-025X.2000.03.028
    [18] Du S G. New development in friction welding technology: Part II. Weld Technol, 2000, 29(6): 48 doi: 10.3969/j.issn.1002-025X.2000.06.025

    杜随更. 摩擦焊接工艺新发展(二). 焊接技术, 2000, 29(6):48 doi: 10.3969/j.issn.1002-025X.2000.06.025
    [19] Bhamji I, Preuss M, Threadgill P L, et al. Linear friction welding of AISI 316L stainless steel. Mater Sci Eng A, 2010, 528(2): 680 doi: 10.1016/j.msea.2010.09.043
    [20] Wanjara P, Jahazi M. Linear friction welding of Ti-6Al-4V: Processing, microstructure, and mechanical-property inter-relationships. Metall Mater Trans A, 2005, 36(8): 2149 doi: 10.1007/s11661-005-0335-5
    [21] Weiss R, Sassani F. Strength of friction welded ceramic-metal joints. Mater Sci Technol, 1998, 14(6): 554 doi: 10.1179/mst.1998.14.6.554
    [22] Fu L, Du S G, Jie W Q. Effect of external electric field on microstructure and diffusion behavior of friction welding joint of dissimlar materials during post weld annealing treatment. Trans Met Heat Treat, 2003, 24(1): 73 doi: 10.3969/j.issn.1009-6264.2003.01.017

    傅莉, 杜随更, 介万奇. 异种金属摩擦焊后电场热处理组织与扩散行为. 金属热处理学报, 2003, 24(1):73 doi: 10.3969/j.issn.1009-6264.2003.01.017
    [23] Li W Y, Wang F F. Modeling of continuous drive friction welding of mild steel. Mater Sci Eng A, 2011, 528(18): 5921 doi: 10.1016/j.msea.2011.04.001
    [24] Cheniti B, Miroud D, Badji R, et al. Microstructure and mechanical behavior of dissimilar AISI 304L/WC-Co cermet rotary friction welds. Mater Sci Eng A, 2019, 758: 36 doi: 10.1016/j.msea.2019.04.081
    [25] Khidhir G I, Baban S A. Efficiency of dissimilar friction welded 1045 medium carbon steel and 316L austenitic stainless steel joints. J Mater Res Technol, 2019, 8(2): 1926 doi: 10.1016/j.jmrt.2019.01.010
    [26] Kimura M, Ishii H, Kusaka M, et al. Joining phenomena and joint strength of friction welded joint between pure aluminium and low carbon steel. Sci Technol Weld Join, 2009, 14(5): 388 doi: 10.1179/136217109X425856
    [27] Sakiyan S, Sabet H, Abbasi M. Characterization of mechanical properties in X45CrSi9-3/Nimonic 80A welded by friction welding. Int J Steel Struct, 2017, 17(1): 319 doi: 10.1007/s13296-016-0003-1
    [28] Liu Y, Zhao H Y, Peng Y, et al. Microstructure characterization and mechanical properties of the continuous-drive axial friction welded aluminum/stainless steel joint. Int J Adv Manuf Technol, 2019, 104(9-12): 4399 doi: 10.1007/s00170-019-04245-5
    [29] Reddy A C. Evaluation of parametric significance in friction welding process of AA1100 and Zr705 alloy using finite element analysis. Mater Today Proc, 2017, 4(2): 2624 doi: 10.1016/j.matpr.2017.02.136
    [30] Nan X J, Xiong J T, Jin F, et al. Modeling of rotary friction welding process based on maximum entropy production principle. J Manuf Process, 2019, 37: 21 doi: 10.1016/j.jmapro.2018.11.016
    [31] Sahin M. Optimizing the parameters for friction welding stainless steel to copper parts. Mater Tehnol, 2016, 50(1): 109 doi: 10.17222/mit.2015.023
    [32] Winiczenko R. Effect of friction welding parameters on the tensile strength and microstructural properties of dissimilar AISI 1020-ASTM A536 joints. Int J Adv Manuf Technol, 2016, 84(5-8): 941
    [33] Sreenivasan K S, Kumar S S, Katiravan J. Genetic algorithm based optimization of friction welding process parameters on AA7075-SiC composite. Eng Sci Technol Int J, 2019, 22(4): 1136
    [34] Lin C B, Wu L C, Chou Y C. Effect of solvent and cosolvent on friction welding properties between part of PMMA with PVC. J Mater Sci, 2003, 38(12): 2563 doi: 10.1023/A:1024414030765
    [35] Cheepu M, Ashfaq M, Muthupandi V. A new approach for using interlayer and analysis of the friction welding of titanium to stainless steel. Trans Indian Inst Met, 2017, 70(10): 2591 doi: 10.1007/s12666-017-1114-x
    [36] Wang G L, Li J L, Wang W L, et al. Rotary friction welding on dissimilar metals of aluminum and brass by using pre-heating method. Int J Adv Manuf Technol, 2018, 99(5-8): 1293 doi: 10.1007/s00170-018-2572-y
    [37] Chi L X, Wu W. Effect of post-heat treatment on microstructure and mechanical properties of friction welding joint of 45 steel. Trans Mater Heat Treat, 2015, 36(1): 99

    迟露鑫, 吴玮. 热处理对45钢摩擦焊接头组织性能的影响. 材料热处理学报, 2015, 36(1):99
    [38] Kimura M, Kusaka M, Kaizu K, et al. Friction welding technique and joint properties of thin-walled pipe friction-welded joint between type 6063 aluminum alloy and AISI 304 austenitic stainless steel. Int J Adv Manuf Technol, 2016, 82(1-4): 489 doi: 10.1007/s00170-015-7384-8
    [39] Nasution A K, Ulum M F, Kadir M R A, et al. Mechanical and corrosion properties of partially degradable bone screws made of pure iron and stainless steel 316L by friction welding. Sci China Mater, 2018, 61(4): 593 doi: 10.1007/s40843-017-9057-3
    [40] Lu D. The Structure Design and the Simulation of all Motor Drive Friction Welding Machine [Dissertation]. Harbin: Northeast Forestry University, 2016

    路达. 全电机驱动摩擦焊机的结构设计及仿真[学位论文]. 哈尔滨: 东北林业大学, 2016
    [41] Liu H. Research on the Closed-Loop Electro Hydraulic Proportional Control System of Friction Welding Machine [Dissertation]. Harbin: Northeast Forestry University, 2009

    刘幻. 摩擦焊机电液比例闭环控制系统的研究[学位论文]. 哈尔滨: 东北林业大学, 2009
    [42] Li P. Heat Source Evolution and Joint Formation in Rotary Friction Welding Process [Dissertation]. Xi'an: Northwestern Polytechnical University, 2015

    李鹏. 旋转摩擦焊热源演变及接头成形机制[学位论文]. 西安: 西北工业大学, 2015
  • 加载中
图(16)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  115
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-13
  • 网络出版日期:  2021-07-06

目录

    /

    返回文章
    返回