-
摘要: 在对摩擦焊接进行分类并简要说明的基础上,对连续驱动摩擦焊接技术的研究发展和应用现状进行了全面梳理和深入剖析,涉及焊接工艺过程特征和主要工艺参数、工艺探索及工艺参数对接头性能的影响、数值分析和模拟及工艺参数优化、异种金属和非金属材料摩擦焊接与工艺创新、实际工程应用和焊接设备等方面。从摩擦焊接技术的潜在应用、核心科学问题、新型摩擦焊接设备的研发、数值分析和模拟、与新兴技术的结合等方面,对连续驱动摩擦焊接技术进行了评述和探讨。Abstract: The friction welding (FW) technology is a kind of solid-phase hot pressing welding method applied to the connection of similar or dissimilar materials. During the FW process, welding heat is generated by the pressure and high-speed relative motion between the joint interfaces of the workpieces. After the joint interfaces and their neighborhood arrive at the thermoplastic state, the workpieces are pressed into a whole by upsetting. FW has a wide range of weldability (e.g., carbon steel, alloy steel, non-ferrous metals, other materials of the same kind, dissimilar metal materials, and metal and non-metal materials with completely different properties) and can obtain welded joints with excellent properties (closed to base metal) and fewer defects (e.g., cracks, pores, and segregation); thus, it has high reliability to welded joints. As its advantages, FW exhibits low energy consumption (i.e., 10%–20% of fusion welding), high efficiency (i.e., only a few seconds to realize an effective joining of the workpieces), and environmental friendliness (i.e., no welding rod, wire, flux, or protective gas and no arc, spatter, smoke, or slag as in fusion welding) and can easily realize automation and large-scale production. FW is widely used in high-tech manufacturing in various industries, including in the automobile, aviation, aerospace, nuclear energy, oil drilling, marine development, and electric power industries. On the basis of the classification and the brief description of FW, the present situation of the research, development, and application of the continuous-drive FW (CDFW) technology was comprehensively sorted out and analyzed in-depth in this paper. This study involved the CDFW process characteristics and main process parameters, process exploration, influence of the process parameters on welded joint properties, numerical analysis, simulations, process parameter optimization, CDFW process innovation for dissimilar metals and non-metallic materials, practical engineering applications, and welding equipment, among others. The aspects of the potential applications of the FW technology, core scientific issues, research and development of the novel FW equipment, numerical analysis and simulation, and combination with emerging technologies associated with the CDFW technology were also reviewed and discussed.
-
图 11 聚氯乙烯与聚甲基丙烯酸甲酯CDFW焊缝拉伸试验断面微观组织形态对比(Fud—中心区,Fpd—周边区,Fpl—中间部分)。(a)未使用溶剂;(b)添加蒸馏水
Figure 11. Comparison of the microstructure morphologies of the CDFW joints after the tensile test (Fud—central zone, Fpd—middle section, Fpl—peripheral zone): (a) without solvent treatment; (b) treated with distilled water
-
参考文献
[1] Qi S A, Liu C D. Friction welding and its technical development. Machinery, 2003, 41(11): 24 doi: 10.3969/j.issn.1000-4998.2003.11.008齐少安, 刘承东. 摩擦焊接及其工艺发展. 机械制造, 2003, 41(11):24 doi: 10.3969/j.issn.1000-4998.2003.11.008 [2] Li W Y, Vairis A, Preuss M, et al. Linear and rotary friction welding review. Int Mater Rev, 2016, 61(2): 71 doi: 10.1080/09506608.2015.1109214 [3] Akinlabi E T, Mahamood R M. Solid-state Welding: Friction and Friction Stir Welding Processes. Switzerland: Springer International Publishing, 2020 [4] Liang H, Zhang Z. Application of inertial friction welding on aeroengine. J Mater Eng, 1992, 20(2): 48梁海, 张峥. 惯性摩擦焊在航空发动机上的应用. 材料工程, 1992, 20(2):48 [5] Nicholas E D. Friction processing technologies. Weld World, 2003, 47(11-12): 2 doi: 10.1007/BF03266402 [6] Chen Z H. Analysis of friction processing technology and its engineering applications. Electr Weld Mach, 2011, 41(8): 101 doi: 10.3969/j.issn.1001-2303.2011.08.020陈忠海. 摩擦焊接技术及其工程应用. 电焊机, 2011, 41(8):101 doi: 10.3969/j.issn.1001-2303.2011.08.020 [7] Wang Y, Xiong B Q, Li Z H, et al. Microstructure and properties of friction stir welded joints for Al‒Zn‒Mg‒Cu‒Zr‒(Sc) alloys. Chin J Eng, 2020, 42(5): 612王宇, 熊柏青, 李志辉, 等. Al‒Zn‒Mg‒Cu‒Zr‒(Sc)合金搅拌摩擦焊接头组织和性能. 工程科学学报, 2020, 42(5):612 [8] Zhao X Z, Du S G, Hou D X. Status and perspectives of continues drive friction welding machine. New Technol New Process, 2014(2): 1 doi: 10.3969/j.issn.1003-5311.2014.02.001赵鑫哲, 杜随更, 侯东祥. 连续驱动摩擦焊机的研究现状和展望. 新技术新工艺, 2014(2):1 doi: 10.3969/j.issn.1003-5311.2014.02.001 [9] Gao J Z, Xu B, Xu X F, et al. Applications of friction welding in jointing of petroleum tubular goods. Petroleum Tubul Goods Instrum, 2019, 5(6): 1高建忠, 徐斌, 许晓锋, 等. 摩擦焊技术在石油管材连接中的应用展望. 石油管材与仪器, 2019, 5(6):1 [10] Wang Z P, Zhong Y, Zhang L J, et al. Friction weldability of TiAl to NiCr20TiAl. Electr Weld Mach, 2004, 34(9): 35 doi: 10.3969/j.issn.1001-2303.2004.09.012王忠平, 钟燕, 张立军, 等. TiAl金属间化合物与NiCr20TiAl摩擦焊接性分析. 电焊机, 2004, 34(9):35 doi: 10.3969/j.issn.1001-2303.2004.09.012 [11] Jin F, Xiong J T, Shi J M, et al. Flash formation mechanism during rotary friction welding of GH4169 superalloy. Mater Rep, 2020, 34(10): 10144 doi: 10.11896/cldb.20030095金峰, 熊江涛, 石俊秒, 等. GH4169旋转摩擦焊飞边成形机理研究. 材料导报, 2020, 34(10):10144 doi: 10.11896/cldb.20030095 [12] Li X, Li J L, Jin F, et al. Effect of rotation speed on friction behavior of rotary friction welding of AA6061-T6 aluminum alloy. Weld World, 2018, 62(5): 923 doi: 10.1007/s40194-018-0601-y [13] Liang Z D, Qin G L, Geng P H, et al. Continuous drive friction welding of 5A33 Al alloy to AZ31B Mg alloy. J Manuf Process, 2017, 25: 153 doi: 10.1016/j.jmapro.2016.11.004 [14] Liang Z D, Qin G L, Wang L Y, et al. Microstructural characterization and mechanical properties of dissimilar friction welding of 1060 aluminum to AZ31B magnesium alloy. Mater Sci Eng A, 2015, 645: 170 doi: 10.1016/j.msea.2015.07.089 [15] Liu Y. Design of Hydraulic Servo Control System for Phase Friction Welding [Dissertation]. Harbin: Harbin Engineering University, 2013刘颖. 相位摩擦焊的液压伺服系统设计[学位论文]. 哈尔滨: 哈尔滨工程大学, 2013 [16] Tu H Y. Research and Development of Control System of Continuous Driven Friction Welding Machine [Dissertation]. Xi'an: Northwestern Polytechnical University, 2007涂昊昀. 连续驱动摩擦焊机控制系统的研究与开发[学位论文]. 西安: 西北工业大学, 2007 [17] Du S G. New development in friction welding technology: Part I. Weld Technol, 2000, 29(3): 49 doi: 10.3969/j.issn.1002-025X.2000.03.028杜随更. 摩擦焊接工艺新发展(一). 焊接技术, 2000, 29(3):49 doi: 10.3969/j.issn.1002-025X.2000.03.028 [18] Du S G. New development in friction welding technology: Part II. Weld Technol, 2000, 29(6): 48 doi: 10.3969/j.issn.1002-025X.2000.06.025杜随更. 摩擦焊接工艺新发展(二). 焊接技术, 2000, 29(6):48 doi: 10.3969/j.issn.1002-025X.2000.06.025 [19] Bhamji I, Preuss M, Threadgill P L, et al. Linear friction welding of AISI 316L stainless steel. Mater Sci Eng A, 2010, 528(2): 680 doi: 10.1016/j.msea.2010.09.043 [20] Wanjara P, Jahazi M. Linear friction welding of Ti-6Al-4V: Processing, microstructure, and mechanical-property inter-relationships. Metall Mater Trans A, 2005, 36(8): 2149 doi: 10.1007/s11661-005-0335-5 [21] Weiss R, Sassani F. Strength of friction welded ceramic-metal joints. Mater Sci Technol, 1998, 14(6): 554 doi: 10.1179/mst.1998.14.6.554 [22] Fu L, Du S G, Jie W Q. Effect of external electric field on microstructure and diffusion behavior of friction welding joint of dissimlar materials during post weld annealing treatment. Trans Met Heat Treat, 2003, 24(1): 73 doi: 10.3969/j.issn.1009-6264.2003.01.017傅莉, 杜随更, 介万奇. 异种金属摩擦焊后电场热处理组织与扩散行为. 金属热处理学报, 2003, 24(1):73 doi: 10.3969/j.issn.1009-6264.2003.01.017 [23] Li W Y, Wang F F. Modeling of continuous drive friction welding of mild steel. Mater Sci Eng A, 2011, 528(18): 5921 doi: 10.1016/j.msea.2011.04.001 [24] Cheniti B, Miroud D, Badji R, et al. Microstructure and mechanical behavior of dissimilar AISI 304L/WC-Co cermet rotary friction welds. Mater Sci Eng A, 2019, 758: 36 doi: 10.1016/j.msea.2019.04.081 [25] Khidhir G I, Baban S A. Efficiency of dissimilar friction welded 1045 medium carbon steel and 316L austenitic stainless steel joints. J Mater Res Technol, 2019, 8(2): 1926 doi: 10.1016/j.jmrt.2019.01.010 [26] Kimura M, Ishii H, Kusaka M, et al. Joining phenomena and joint strength of friction welded joint between pure aluminium and low carbon steel. Sci Technol Weld Join, 2009, 14(5): 388 doi: 10.1179/136217109X425856 [27] Sakiyan S, Sabet H, Abbasi M. Characterization of mechanical properties in X45CrSi9-3/Nimonic 80A welded by friction welding. Int J Steel Struct, 2017, 17(1): 319 doi: 10.1007/s13296-016-0003-1 [28] Liu Y, Zhao H Y, Peng Y, et al. Microstructure characterization and mechanical properties of the continuous-drive axial friction welded aluminum/stainless steel joint. Int J Adv Manuf Technol, 2019, 104(9-12): 4399 doi: 10.1007/s00170-019-04245-5 [29] Reddy A C. Evaluation of parametric significance in friction welding process of AA1100 and Zr705 alloy using finite element analysis. Mater Today Proc, 2017, 4(2): 2624 doi: 10.1016/j.matpr.2017.02.136 [30] Nan X J, Xiong J T, Jin F, et al. Modeling of rotary friction welding process based on maximum entropy production principle. J Manuf Process, 2019, 37: 21 doi: 10.1016/j.jmapro.2018.11.016 [31] Sahin M. Optimizing the parameters for friction welding stainless steel to copper parts. Mater Tehnol, 2016, 50(1): 109 doi: 10.17222/mit.2015.023 [32] Winiczenko R. Effect of friction welding parameters on the tensile strength and microstructural properties of dissimilar AISI 1020-ASTM A536 joints. Int J Adv Manuf Technol, 2016, 84(5-8): 941 [33] Sreenivasan K S, Kumar S S, Katiravan J. Genetic algorithm based optimization of friction welding process parameters on AA7075-SiC composite. Eng Sci Technol Int J, 2019, 22(4): 1136 [34] Lin C B, Wu L C, Chou Y C. Effect of solvent and cosolvent on friction welding properties between part of PMMA with PVC. J Mater Sci, 2003, 38(12): 2563 doi: 10.1023/A:1024414030765 [35] Cheepu M, Ashfaq M, Muthupandi V. A new approach for using interlayer and analysis of the friction welding of titanium to stainless steel. Trans Indian Inst Met, 2017, 70(10): 2591 doi: 10.1007/s12666-017-1114-x [36] Wang G L, Li J L, Wang W L, et al. Rotary friction welding on dissimilar metals of aluminum and brass by using pre-heating method. Int J Adv Manuf Technol, 2018, 99(5-8): 1293 doi: 10.1007/s00170-018-2572-y [37] Chi L X, Wu W. Effect of post-heat treatment on microstructure and mechanical properties of friction welding joint of 45 steel. Trans Mater Heat Treat, 2015, 36(1): 99迟露鑫, 吴玮. 热处理对45钢摩擦焊接头组织性能的影响. 材料热处理学报, 2015, 36(1):99 [38] Kimura M, Kusaka M, Kaizu K, et al. Friction welding technique and joint properties of thin-walled pipe friction-welded joint between type 6063 aluminum alloy and AISI 304 austenitic stainless steel. Int J Adv Manuf Technol, 2016, 82(1-4): 489 doi: 10.1007/s00170-015-7384-8 [39] Nasution A K, Ulum M F, Kadir M R A, et al. Mechanical and corrosion properties of partially degradable bone screws made of pure iron and stainless steel 316L by friction welding. Sci China Mater, 2018, 61(4): 593 doi: 10.1007/s40843-017-9057-3 [40] Lu D. The Structure Design and the Simulation of all Motor Drive Friction Welding Machine [Dissertation]. Harbin: Northeast Forestry University, 2016路达. 全电机驱动摩擦焊机的结构设计及仿真[学位论文]. 哈尔滨: 东北林业大学, 2016 [41] Liu H. Research on the Closed-Loop Electro Hydraulic Proportional Control System of Friction Welding Machine [Dissertation]. Harbin: Northeast Forestry University, 2009刘幻. 摩擦焊机电液比例闭环控制系统的研究[学位论文]. 哈尔滨: 东北林业大学, 2009 [42] Li P. Heat Source Evolution and Joint Formation in Rotary Friction Welding Process [Dissertation]. Xi'an: Northwestern Polytechnical University, 2015李鹏. 旋转摩擦焊热源演变及接头成形机制[学位论文]. 西安: 西北工业大学, 2015 -