• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固溶处理对S32707特超级双相不锈钢析出相、组织及性能影响

沈伟 孙丽娟 李长荣 杨占兵 王福明

沈伟, 孙丽娟, 李长荣, 杨占兵, 王福明. 固溶处理对S32707特超级双相不锈钢析出相、组织及性能影响[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.03.25.002
引用本文: 沈伟, 孙丽娟, 李长荣, 杨占兵, 王福明. 固溶处理对S32707特超级双相不锈钢析出相、组织及性能影响[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.03.25.002
SHEN Wei, SUN Li-juan, LI Chang-rong, YANG Zhan-bing, WANG Fu-ming. Solution treatment effect on precipitates, microstructure, and properties of S32707 hyper-duplex stainless steel[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.03.25.002
Citation: SHEN Wei, SUN Li-juan, LI Chang-rong, YANG Zhan-bing, WANG Fu-ming. Solution treatment effect on precipitates, microstructure, and properties of S32707 hyper-duplex stainless steel[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.03.25.002

固溶处理对S32707特超级双相不锈钢析出相、组织及性能影响

doi: 10.13374/j.issn2095-9389.2021.03.25.002
基金项目: 国家自然科学基金资助项目(51974017)
详细信息
    通讯作者:

    E-mail: wangfuming@metall.ustb.edu.cn

  • 中图分类号: TG142.71

Solution treatment effect on precipitates, microstructure, and properties of S32707 hyper-duplex stainless steel

More Information
  • 摘要: 通过Thermo-Calc热力学计算、OM和FE-SEM观察、力学性能和腐蚀性能试验对不同固溶温度下的特超级双相不锈钢进行分析和研究。结果表明:σ相和非平衡氮化物是固溶水冷组织中的主要析出相,当固溶温度低于1050 ℃时,σ相优先沿双相界面析出,显著降低双相不锈钢的冲击韧性;当固溶温度高于1100 ℃,非平衡氮化物开始在铁素体晶粒内部析出,且随着固溶温度的升高,非平衡氮化物析出数量增加。这是由于固溶水冷过程中氮在铁素体中的溶解度快速降低,过饱和的氮来不及扩散到相邻奥氏体中,只能以氮化物的形式析出。随固溶温度升高,铁素体含量增加,奥氏体含量降低,实验钢的强度增加,冲击韧性降低。在1080~1120 ℃之间固溶时,双相比例接近1∶1,S32707特超级双相不锈钢具有优良的综合力学性能和耐晶间腐蚀性能。

     

  • 图  1  实验钢锻后组织。(a)纵向;(b)横向

    Figure  1.  Structure of the tested steel being forged: (a) longitudinal; (b) transverse

    图  2  实验钢Thermo-Calc热力学计算结果

    Figure  2.  Thermo-Calc thermodynamic calculation of tested steel

    图  3  不同固溶温度下析出相、组织光镜形貌及双相统计结果。(a)1000 ℃;(b)1050 ℃;(c)1100 ℃;(d)1150 ℃;(e)1200 ℃;(f)1250 ℃;(g)1300 ℃;(h)双相统计结果

    Figure  3.  OM images of precipitates and microstructure at different annealing temperatures and results of dual-phase volume fractions: (a) 1000 ℃; (b) 1050 ℃; (c) 1100 ℃; (d) 1150 ℃; (e) 1200 ℃; (f) 1250 ℃; (g) 1300 ℃; (h) results of dual-phase volume fractions at different annealing temperatures

    图  4  不同固溶温度下析出相和组织的背散射电子形貌。(a)1000 ℃;(b)1050 ℃;(c)1080 ℃

    Figure  4.  Backscattered electron observation of precipitates and microstructure at different annealing temperatures: (a) 1000 ℃; (b) 1050 ℃; (c) 1080 ℃

    图  5  不同固溶温度下非平衡氮化物OM形貌。(a)1080 ℃;(b)1100 ℃;(c)1150 ℃;(d)1200 ℃;(e)1250 ℃;(f)1300 ℃

    Figure  5.  OM observation of non-equilibrium nitrides at different annealing temperatures: (a) 1080 ℃; (b) 1100 ℃; (c) 1150 ℃; (d) 1200 ℃; (e) 1250 ℃; (f) 1300 ℃

    图  6  非平衡氮化物TEM形貌(a)和选区电子衍射(b),不同温度下氮在铁素体和奥氏体中含量的热力学计算结果(c)

    Figure  6.  TEM morphology (a) and electron selected area diffraction (b) of nonequilibrium nitride, thermodynamic calculation results (c) of N content in ferrite and austenite at different temperatures

    图  7  不同固溶温度下实验钢拉伸断口FE-SEM形貌。(a)1050 ℃;(b)1080 ℃;(c)1100 ℃;(d)1120 ℃;(e)1150 ℃;(f)1200 ℃

    Figure  7.  FE-SEM observation of tensile fracture of tested steel at different annealing temperatures: (a) 1050 ℃; (b) 1080 ℃; (c) 1100 ℃; (d) 1120 ℃; (e) 1150 ℃; (f) 1200 ℃

    图  8  不同固溶温度下实验钢晶间腐蚀宏观与OM形貌

    Figure  8.  Macro and OM morphology of experimental steel after an intergranular corrosion test at different annealing temperatures

    表  1  实验钢化学成分(质量分数)

    Table  1.   Chemical composition of the tested steel %

    CSiMnCrMoNiNCuCoFe
    0.010.371.1827.424.646.500.340.540.77Bal.
    下载: 导出CSV

    表  2  不同固溶温度下实验钢力学性能

    Table  2.   Mechanical properties of experimental steel at different annealing temperatures

    Annealing temperature /
    Tensile
    strength /
    MPa
    Yield
    strength /
    MPa
    Elongation/
    %
    Impact
    energy /
    J
    105094470131153
    108093871939232
    110094172438223
    112093672935219
    115094073635195
    120095375730163
    ASTM A790/A790M≥920≥700≥25
    下载: 导出CSV
  • [1] Feng H, Zhou X Y, Liu H, et al. Development and trend of hyper duplex stainless steels. J Iron Steel Res, 2015, 27(4): 1

    丰涵, 周晓玉, 刘虎, 等. 特超级双相不锈钢的发展现状及趋势. 钢铁研究学报, 2015, 27(4):1
    [2] Chail G, Kangas P. Super and hyper duplex stainless steels: structures, properties and applications. Procedia Struct Integr, 2016, 2: 1755 doi: 10.1016/j.prostr.2016.06.221
    [3] Wu J. Duplex Stainless Steel. Beijing: Metallurgical Industry Press, 1999

    吴玖. 双相不锈钢. 北京: 冶金工业出版社, 1999
    [4] Yamamoto R, Yakuwa H, Miyasaka M, et al. Effects of the α/γ-phase ratio on the corrosion behavior of cast duplex stainless steel. Corrosion, 2020, 76(9): 815 doi: 10.5006/3464
    [5] Fargas G, Anglada M, Mateo A. Effect of the annealing temperature on the mechanical properties, formability and corrosion resistance of hot-rolled duplex stainless steel. J Mater Process Technol, 2009, 209(4): 1770 doi: 10.1016/j.jmatprotec.2008.04.026
    [6] Chan K W, Tjong S C. Effect of secondary phase precipitation on the corrosion behavior of duplex stainless steels. Materials (Basel), 2014, 7(7): 5268 doi: 10.3390/ma7075268
    [7] He L, Wirian L, Singh P M. Effects of isothermal aging on the microstructure evolution and pitting corrosion resistance of lean duplex stainless steel UNS S32003. Metall Mater Trans A, 2019, 50(5): 2103 doi: 10.1007/s11661-019-05189-x
    [8] Zhang B B, Jiang Z H, Li H B, et al. Precipitation behavior and phase transformation of hyper duplex stainless steel UNS S32707 at nose temperature. Mater Charact, 2017, 129: 31 doi: 10.1016/j.matchar.2017.04.018
    [9] Ebrahimi N, Momeni M, Moayed M H, et al. Correlation between critical pitting temperature and degree of sensitisation on alloy 2205 duplex stainless steel. Corros Sci, 2011, 53(2): 637 doi: 10.1016/j.corsci.2010.10.009
    [10] Feng Z H, Li J X, Li J Y, et al. Influence of the sample position of the cast on the thermoplasticity of lean duplex stainless steel 2101. Chin J Eng, 2017, 39(9): 1364

    冯志慧, 李建兴, 李静媛, 等. 铸坯取样位置对经济型双相不锈钢2101热塑性的影响. 工程科学学报, 2017, 39(9):1364
    [11] Shin B H, Kim D, Park S, et al. Precipitation condition and effect of volume fraction on corrosion properties of secondary phase on casted super-duplex stainless steel UNS S32750. Anti Corros Methods Mater, 2019, 66(1): 61 doi: 10.1108/ACMM-06-2018-1958
    [12] Xu J P, Wu H M, Tang L, et al. The microstructure and performance features of typical duplex stainless steels and their impact on fabrication process // The 6th China International Duplex Stainless Steel Conference 2018. Beijing, 2018: 52

    徐见平, 吴汉民, 汤磊, 等. 几种典型双相不锈钢组织及性能特点及其对加工过程的影响 // 2018年第六届中国国际双相不锈钢大会. 北京, 2018: 52
    [13] Huang S, Song Z G, Zheng W J, et al. Influence of solution temperature on microstructure and mechanical properties of 00Cr27Ni7Mo5N. Iron Steel, 2011, 46(12): 71

    黄盛, 宋志刚, 郑文杰, 等. 固溶处理对00Cr27Ni7Mo5N不锈钢的组织及力学性能的影响. 钢铁, 2011, 46(12):71
    [14] Shen W, Wang F M, Yang Z B, et al. Effect of ferrite proportion and precipitates on dual-phase corrosion of S32750 super duplex stainless steel with different annealing temperatures. Steel Res Int, 2021: 2000568
    [15] Xu H J, Hu W Q, Kang C, et al. Effect of high temperature heat treatment on microstructure and properties of lean duplex stainless steel 2101. Trans Mater Heat Treat, 2021, 42(2): 74

    徐海健, 胡万卿, 康超, 等. 高温热处理对节约型2101双相不锈钢组织性能的影响. 材料热处理学报, 2021, 42(2):74
    [16] Rajkumar M, Babu S P K, Nagaraj T A. Intergranular corrosion characteristics of niobium stabilized 27Cr−7Ni−Mo−W−N cast hyper duplex stainless steel. Mater Today:Proc, 2020, 27: 2551 doi: 10.1016/j.matpr.2019.10.134
    [17] Li H B, Zhou E Z, Zhang D W, et al. Microbiologically influenced corrosion of 2707 hyper-duplex stainless steel by marine pseudomonas aeruginosa biofilm. Sci Rep, 2016, 6: 20190 doi: 10.1038/srep20190
    [18] Kim D H, Kim N H, Lee H W. Corrosion and cracking characteristics upon aging of hyper duplex stainless steel weld. Mater Sci Technol, 2020, 36(7): 783 doi: 10.1080/02670836.2020.1743575
    [19] Marques I J, Silva F J, Santos T F A. Rapid precipitation of intermetallic phases during isothermal treatment of duplex stainless steel joints produced by friction stir welding. J Alloys Compd, 2020, 820: 153170 doi: 10.1016/j.jallcom.2019.153170
    [20] Zhang D, Wen P, Yin B Z, et al. Temperature evolution, phase ratio and corrosion resistance of duplex stainless steels treated by laser surface heat treatment. J Manuf Process, 2021, 62: 99 doi: 10.1016/j.jmapro.2020.12.040
    [21] Pettersson N, Pettersson R F A, Wessman S. Precipitation of chromium nitrides in the super duplex stainless steel 2507. Metall Mater Trans A, 2015, 46(3): 1062 doi: 10.1007/s11661-014-2718-y
    [22] Bettini E, Kivisäkk U, Leygraf C, et al. Study of corrosion behavior of a 2507 super duplex stainless steel: Influence of quenched-in and isothermal nitrides. Int J Electrochem Sci, 2014, 9(1): 61
    [23] Chen Y L, Zhang T R, Wang Y D, et al. Effects of O, N and Ni contents on hot plasticity of 0Cr25Ni7Mo4N duplex stainless steel. Acta Metall Sin, 2014, 50(8): 905 doi: 10.11900/0412.1961.2014.00057

    陈雨来, 张泰然, 王一德, 等. O, N和Ni含量对0Cr25Ni7Mo4N双相不锈钢热轧塑性的影响. 金属学报, 2014, 50(8):905 doi: 10.11900/0412.1961.2014.00057
    [24] Deng B, Jiang Y M, Gao J, et al. Effect of annealing treatment on microstructure evolution and the associated corrosion behavior of a super-duplex stainless steel. J Alloys Compd, 2010, 493(1-2): 461 doi: 10.1016/j.jallcom.2009.12.127
    [25] Liang T. The Precipitation Mechanism of σ Phase in Duplex Stainless Steel for Nuclear Power Station [Dissertation]. Beijing: University of Chinese Academy of Sciences, 2013

    梁田. 核电用双相不锈钢中σ相析出机制研究[学位论文]. 北京: 中国科学院大学, 2013
    [26] Bai Q Q, Zhang Z H. Effect of solution treatment temperature on phase ration and mechanical properties of 2507 super duplex stainless steel. Heat Treat Met, 2019, 44(9): 123

    白青青, 张志宏. 固溶处理温度对2507超级双相不锈钢相比例及力学性能的影响. 金属热处理, 2019, 44(9):123
    [27] Song Z G, Chen B, Zheng W J, et al. Influence of solution temperature on microstructure and mechanical property of 00Cr22Ni5Mo3N. J Iron Steel Res, 2004, 16(6): 47 doi: 10.3321/j.issn:1001-0963.2004.06.010

    宋志刚, 陈斌, 郑文杰, 等. 固溶温度对00Cr22Ni5 Mo3N钢组织及力学性能的影响. 钢铁研究学报, 2004, 16(6):47 doi: 10.3321/j.issn:1001-0963.2004.06.010
    [28] Ha H Y, Lee T H, Lee C G, et al. Understanding the relation between pitting corrosion resistance and phase fraction of S32101 duplex stainless steel. Corros Sci, 2019, 149: 226 doi: 10.1016/j.corsci.2019.01.001
    [29] Zheng J C, Pan C, Zhang J T, et al. Effect of manganese addition on resistance to pitting corrosion of duplex stainless steel S32205. Chin J Eng, 2019, 41(2): 246

    郑建超, 潘超, 张建涛, 等. Mn对2205双相不锈钢耐点蚀性能的影响. 工程科学学报, 2019, 41(2):246
    [30] Raj P N, Navaneethkrishnan P K, Sekar K, et al. Comparative study of mechanical, corrosion and erosion—corrosion properties of cast hyper-duplex and super-duplex stainless steels. Int J Miner Metall Mater, 2020, 27(7): 954 doi: 10.1007/s12613-020-1984-5
    [31] Zhu M, Zhang Q, Yuan Y F, et al. Effect of microstructure and passive film on corrosion resistance of 2507 super duplex stainless steel prepared by different cooling methods in simulated marine environment. Int J Miner Metall Mater, 2020, 27(8): 1100 doi: 10.1007/s12613-020-2094-0
    [32] Zhu M, Zhu T, Chen M, et al. Corrosion behavior of 2507 duplex stainless steel in simulated SO2-Polluted seawater. Chin J Eng, 2018, 40(5): 587

    朱敏, 朱涛, 陈明, 等. 2507双相不锈钢在SO2污染模拟海水中的腐蚀行为. 工程科学学报, 2018, 40(5):587
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  61
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 网络出版日期:  2021-05-24

目录

    /

    返回文章
    返回