Application of chemiresistive sensors based on the metal-organic framework for detecting volatile organic compounds
-
摘要: 化学电阻传感器由于其结构简单、分析快速等特点在众多气体传感方式中脱颖而出,因此成为了目前应用广泛的传感器类型。其中,用于检测挥发性有机化合物(VOCs)的电阻传感器中敏感材料对气体的选择性吸附和相应的检测至关重要,此外也需要一些额外措施保证检测的选择性。因此,传感材料的比表面积、孔尺寸、功能官能团以及辅助材料等决定了传感器的响应程度、选择和敏感程度。金属有机框架材料(MOF)是一类新型的有机−无机杂化材料,具有丰富多孔、高比表面积、结构多样性、化学稳定性良好等特点,除此以外一些MOF衍生物也具有比表面积大、导电性良好等特点,因此MOF及MOF衍生物已在气体传感器中得到广泛研究和应用。基于化学电阻传感器基本原理、MOF及MOF衍生物在电阻传感器检测挥发性有机化合物中起到的作用、原理、及其应用,对其发展前景和面临的挑战进行了展望。Abstract: Chemical resistance sensors stand out among many gas sensing methods because of their simple structure, low-cost fabrication, facile integration with various electronic devices, and quick analysis; therefore, presently, they are widely used for gas sensing. Chemical resistance sensing is achieved by changing the electronic distribution of the sensing material. Among these chemical resistance sensors, the selective adsorption of gases and the corresponding detection of sensitive materials in the resistance sensor used for detecting volatile organic compounds (VOCs) are very important. In addition, measures to ensure the selectivity of detection are necessary. Therefore, the specific surface area, pore size and functional groups of sensing materials, and some auxiliary materials determine the response and sensitivity of the sensor. Metal-organic framework materials (MOFs) are a new class of organic-inorganic hybrid materials. It is characterized by rich porosity, high specific surface area, structural diversity, and chemical stability, making it exhibit good potential in the gas storage and separation field, catalysis field, and chemical sensing field. Some MOF derivatives, in addition to their properties, such as good electrical conductivity, have characteristics of MOF, such as high specific surface area. Therefore, MOF and its derivatives have been widely studied and applied as sensitive materials and filter media in gas sensors. Some MOF and MOF derivatives can be used as sensitive materials for chemical resistance sensors to improve the response to VOCs, and MOF membranes can also be used for their selective adsorption as a filter layer to improve the selectivity of sensors to the target gas. In this paper, the basic principle of chemical resistance sensors, the role, principle, and application of MOF and MOF derivatives in the detection of volatile organic compounds by resistance sensors are summarized, and the development prospect and challenges are discussed.
-
Key words:
- metal organic framework /
- derivatives /
- adsorption /
- volatile organic compounds /
- resistive sensors
-
图 1 (a)M3(HHTP)2和M3(HITP)2的晶体结构(M=Cu或Ni);(b)使用MOF阵列分析数据对不同分析物的模式分析(横、纵坐标标目中括号内的百分数分别表示主成分1与主成分2在成分分析所占的因素百分比);(c)2D MOFs对16种VOCs的传感性能[17]
Figure 1. (a) Crystal structure of M3(HHTP)2 and M3(HITP)2; (b) pattern recognition of diverse analytes using 2D conductive MOF-based sensing data (The percentages in parantheses of horizontal and vertical coordinates indicate the percentage of principal component 1 and principal component 2 in component anlysis respectively); (c) sensing performance of 2D conductive MOFs toward 16 different VOCs[17]
图 2 (a)掺杂HITP配体的Cu-HHTP-10C薄膜气体传感器制备示意图;(b)对于不同还原性气体响应的三维图;(c)对三乙胺、甲烷、氢气、丙酮、丁酮和乙苯对氨气选择性的提升[18]
Figure 2. (a) Schematic illustration of the preparation of HITP ligand-doped Cu-HHTP-10C thin film gas sensors; (b) three-dimensional wall chart of responses toward different reducing gases; (c) selectivity improvements toward triethylamine, methane, hydrogen, acetone, butanone, and ethylbenzene against NH3[18]
图 3 (a)双层MOF膜的制备以及将其作为高度选择性苯传感材料的应用示意图;(b)Cu-TCPP-10C-on-Cu-HHTP-20C对苯气体的响应曲线以及与报道的在室温下工作的苯化学电阻气体传感器的比较;(c)对于Cu-TCPP-xC-on-Cu-HHTP-20C选择性的提升[21]; (d) 由ZIF-CoZn包裹的ZnO纳米线的合成示意图;(e)ZnO@5nmZIF-CoZn对于干燥空气氛围下不同浓度的丙酮的响应/恢复曲线和对于25.93 mg·m−3质量浓度丙酮不同湿度范围下的响应/恢复曲线;(f)260 ˚C下对25.93 mg·m−3丙酮改变相对湿度从10%到90%传感器的CV值[22]
Figure 3. (a) Illustration of the preparation of MOF-on-MOF thin films and application of the films as highly selective benzene-sensing materials; (b) response curve for Cu-TCPP-10C-on-Cu-HHTP-20C with respect to benzene gas and in comparison with reported benzene chemiresistive gas sensors working at RT; (c) selectivity improvements for Cu-TCPP-xC-on-Cu-HHTP-20C[21]; (d) schematic illustration of the preparation of ZnO@ZIF-CoZn; (e) response-recovery curves of ZnO@5nmZIF-CoZn to acetone with different concentrations in dry air and to 25.93 mg·m−3 acetone with different relative humidity; (f) CV of sensors by varying RH from 0% to 90% (acetone 25.93 mg·m−3, 260 ˚C)[22]
图 4 (a)利用ZIF-8和ZIF-71孔径差异以及气体分子大小来选择通过气体的机理图;在250 °C下ZnO, ZnO@ZIF-8和ZnO@ZIF-71纳米棒阵列三种传感器的气体浓度梯度响应曲线:(b)乙醇 (20.57, 102.83, 205.67, 308.50, 411.34 mg·m–3);(c)丙酮(25.93, 51.86, 77.79, 103.71, 129.64 mg·m−3);(d)苯(34.87, 174.35, 348.71, 523.06, 697.41 mg·m−3);(e)三种传感器暴露于102.83 mg·m−3乙醇、129.64 mg·m−3丙酮、174.35 mg·m−3苯的响应值(相同VOCs体积浓度)[23]
Figure 4. (a) Mechanism of using the difference between the pore sizes of ZIF-8 and ZIF-71 and gas molecular sizes to select gases passing the ZIFs membrane of ZnO@ZIF NRAs; gas concentration gradient response curves of ZnO NRAs, ZnO@ZIF-8 NRAs, and ZnO@ZIF-71 NRAs at 250 °C: (b) ethanol (20.57, 102.83, 205.67, 308.50, 411.34 mg·m−3); (c) acetone (25.93, 51.86, 77.79, 103.71, 129.64 mg·m−3); (d) benzene (34.87, 174.35, 348.71, 523.06, 697.41 mg·m−3); (e) The response values of the three sensors to 102.83 mg·m−3 ethanol, 129.64 mg·m−3 acetone and 174.35 mg·m−3 benzene (the same VOCs volume concentration)[23]
图 5 (a)非均相杂化MOF和以其为模版的ZnO-Co3O4分层复合结构合成示意图;(b)2-ZIF-L@ZIF-67棒透射电子显微镜图像和扫描电子显微镜图像;(c)2-Co3O4棒@ZnO片透射电子显微镜图像;(d)在450 °C质量浓度范围为2.59~12.96 mg·m−3的丙酮响应[24];(e)Co3O4/Fe2O3形成示意图; 基于Co3O4/Fe2O3和Co3O4的传感器对:(f)相同体积分数(10-4)不同VOCs检测效果(丙醇268.28 mg·m−3、三乙胺451.74 mg·m−3、甲醛134.06 mg·m−3、甲醇143.04 mg·m−3、二甲苯473.97 mg·m−3、丙酮259.29 mg·m−3、乙醇205.67 mg·m−3);(g)不同温度对259.29 mg·m−3丙酮响应[25]
Figure 5. (a) Schematic illustration of the synthetic process for heterogeneous HMOF and HMOF-templated heterogeneous ZnO-Co3O4 hierarchical composite structures; (b) Transmission Electron Microscope image with inset of the corresponding Scanning Electron Microscope image of double-ZIF-L@ZIF-67 rods; (c) Transmission Electron Microscope image of the 2-Co3O4@ZnO sheet; (d) dynamic acetone-sensing transition in the concentration range of 2.59−12.96 mg·m−3 of acetone at 450 °C[24]; (e) schematic illustration of the formation process of Co3O4/Fe2O3 nanocubes; (f) response values of different VOCs with the same volume fraction (10−4) (propanol 268.28 mg·m−3, trithylamine 451.74 mg·m−3, formaldehyde 134.06 mg·m−3, methanol 143.04 mg·m−3, xylene 473.97 mg·m−3, acetone 259.29 mg·m−3, ethanol 205.67 mg·m−3); (g) response towards 259.29 mg·m−3 acetone at different temperatures[25]
图 6 在225 °C下:(a)C-Co3O4,(b)03-Co3O4, (c) 10-Co3O4, (d) 20-Co3O4,(e)40-Co3O4中空分层颗粒对23.70 mg·m−3的对二甲苯响应曲线;(f~j)在200~300 °C下5种传感器对10.28 mg·m−3乙醇、23.70 mg·m−3对二甲苯、20.57 mg·m−3甲苯、17.44 mg·m−3苯、6.70 mg·m−3甲醛和6.25 mg·m−3一氧化碳的气体响应(Rgas/Rair)(不同VOCs体积分数相同); (k~o) 在乙醇作为干扰时5种传感器检测对二甲苯和甲苯的选择性;(p~s)用ZIF-67制备Co3O4纳米笼的制备示意图[26]
Figure 6. Dynamic sensing transients of (a) C-Co3O4, (b) 03-Co3O4, (c) 10-Co3O4, (d) 20-Co3O4, and (e) 40-Co3O4 hollow hierarchical particles to 23.70 mg·m−3 of p-xylene at 225 °C; (f–j) gas responses (Rgas/Rair) of five sensors to 10.28 mg·m−3 ethanol, 23.70 mg·m−3 p-xylene, 20.57 mg·m−3 toluene, 17.44 mg·m−3 benzene, 6.70 mg·m−3 formaldehyde, and 6.25 mg·m−3 carbon monoxide at 200–300°C (the volume fraction of different VOCs is the same); (k–o) selectivity toward p-xylene and toluene over the interfering ethanol gas of five sensors; (p–s) schematic of the preparation of hollow hierarchical Co3O4 nanocages[26]
-
参考文献
[1] Barea E, Montoro C, Navarro J A R. Toxic gas removal – metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chem Soc Rev, 2014, 43(16): 5419 doi: 10.1039/C3CS60475F [2] Wang H, Lustig W P, Li J. Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks. Chem Soc Rev, 2018, 47(13): 4729 doi: 10.1039/C7CS00885F [3] Zhu Q, Zhang Y M, Hu C Y, et al. Progress of research on modified oxide semiconductor gas sensor. J Funct Mater, 2014, 45(17): 17017 doi: 10.3969/j.issn.1001-9731.2014.17.003朱琴, 张裕敏, 胡昌义, 等. 氧化物半导体气敏传感器的改性研究进展. 功能材料, 2014, 45(17):17017 doi: 10.3969/j.issn.1001-9731.2014.17.003 [4] Zang X N, Zhou Q, Chang J, et al. Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron Eng, 2015, 132: 192 doi: 10.1016/j.mee.2014.10.023 [5] Choi S J, Kim I D. Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron Mater Lett, 2018, 14(3): 221 doi: 10.1007/s13391-018-0044-z [6] Kim I D, Rothschild A, Tuller H L. Advances and new directions in gas-sensing devices. Acta Mater, 2013, 61(3): 974 doi: 10.1016/j.actamat.2012.10.041 [7] Zhao M T, Yuan K, Wang Y, et al. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539(7627): 76 doi: 10.1038/nature19763 [8] Zhou H C, Kitagawa S. Metal-organic frameworks (MOFs). Chem Soc Rev, 2014, 43(16): 5415 doi: 10.1039/C4CS90059F [9] Zou X Y, Chen M, Cao X Q, et al. Review of application of MOF materials for removal of environmental pollutants from water (Ⅰ). Chin J Eng, 2020, 42(3): 289邹星云, 陈明, 曹晓强, 等. MOF材料在水环境污染物去除方面的应用现状及发展趋势(Ⅰ). 工程科学学报, 2020, 42(3):289 [10] Fei H H, Paw U L, Rogow D L, et al. Synthesis, characterization, and catalytic application of a cationic metal–organic framework: Ag2(4, 4'-bipy)2(O3SCH2CH2SO3). Chem Mater, 2010, 22(6): 2027 doi: 10.1021/cm9032308 [11] Koo W T, Jang J S, Kim I D. Metal-organic frameworks for chemiresistive sensors. Chem, 2019, 5(8): 1938 doi: 10.1016/j.chempr.2019.04.013 [12] Zhang L T, Zhou Y, Han S T. The role of metal-organic frameworks in electronic sensors. Angewandte Chemie Int Ed, 2021, 60(28): 15192 doi: 10.1002/anie.202006402 [13] Campbell M, Dincă M. Metal–organic frameworks as active materials in electronic sensor devices. Sensors, 2017, 17(5): 1108 doi: 10.3390/s17051108 [14] Zhai Z Y, Zhang X L, Li C J. Research progress of metal organic framework (MOFs)/fiber materials used in resistive gas sensors. Chin J Eng, 2020, 42(9): 1096翟振宇, 张秀玲, 李从举. 金属有机骨架(MOFs)/纤维材料用于电阻式气体传感器的研究进展. 工程科学学报, 2020, 42(9):1096 [15] Kirchon A, Feng L, Drake H F, et al. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem Soc Rev, 2018, 47(23): 8611 doi: 10.1039/C8CS00688A [16] Smith M K, Mirica K A. Self-organized frameworks on textiles (SOFT): Conductive fabrics for simultaneous sensing, capture, and filtration of gases. J Am Chem Soc, 2017, 139(46): 16759 doi: 10.1021/jacs.7b08840 [17] Campbell M G, Liu S F, Swager T M, et al. Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J Am Chem Soc, 2015, 137(43): 13780 doi: 10.1021/jacs.5b09600 [18] Wu A Q, Wang W Q, Zhan H B, et al. Layer-by-layer assembled dual-ligand conductive MOF nano-films with modulated chemiresistive sensitivity and selectivity. Nano Res, 2021, 14(2): 438 doi: 10.1007/s12274-020-2823-8 [19] Yao M S, Lv X J, Fu Z H, et al. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angewandte Chemie Int Ed, 2017, 56(52): 16510 doi: 10.1002/anie.201709558 [20] Hu N, Yang Z, Wang Y, et al. Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology, 2014, 25(2): 025502 doi: 10.1088/0957-4484/25/2/025502 [21] Yao M S, Xiu J W, Huang Q Q, et al. Van der waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing. Angewandte Chemie, 2019, 131(42): 15057 doi: 10.1002/ange.201907772 [22] Yao M S, Tang W X, Wang G E, et al. MOF thin film-coated metal oxide nanowire array: Significantly improved chemiresistor sensor performance. Adv Mater, 2016, 28(26): 5229 doi: 10.1002/adma.201506457 [23] Zhou T T, Sang Y T, Wang X X, et al. Pore size dependent gas-sensing selectivity based on ZnO@ZIF nanorod arrays. Sens Actuat B:Chem, 2018, 258: 1099 doi: 10.1016/j.snb.2017.12.024 [24] Jang J S, Koo W T, Kim D H, et al. In situ coupling of multidimensional MOFs for heterogeneous metal-oxide architectures: Toward sensitive chemiresistors. ACS Central Sci, 2018, 4(7): 929 doi: 10.1021/acscentsci.8b00359 [25] Xu K, Zhao W, Yu X, et al. MOF-derived Co3O4/Fe2O3 p-n hollow cubes for improved acetone sensing characteristics. Phys E Low Dimensional Syst Nanostructures, 2020, 118: 113869 doi: 10.1016/j.physe.2019.113869 [26] Jo Y M, Kim T H, Lee C S, et al. Metal–organic framework-derived hollow hierarchical Co3O4 nanocages with tunable size and morphology: Ultrasensitive and highly selective detection of methylbenzenes. ACS Appl Mater Interfaces, 2018, 10(10): 8860 doi: 10.1021/acsami.8b00733 -