• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同钛酸四丁酯含量对GO−TiO2复合材料组织结构和性能的影响

于凯伦 王博 韩庆 陈建设 李斌川 魏世丞

于凯伦, 王博, 韩庆, 陈建设, 李斌川, 魏世丞. 不同钛酸四丁酯含量对GO−TiO2复合材料组织结构和性能的影响[J]. 工程科学学报, 2022, 44(8): 1360-1367. doi: 10.13374/j.issn2095-9389.2021.03.30.004
引用本文: 于凯伦, 王博, 韩庆, 陈建设, 李斌川, 魏世丞. 不同钛酸四丁酯含量对GO−TiO2复合材料组织结构和性能的影响[J]. 工程科学学报, 2022, 44(8): 1360-1367. doi: 10.13374/j.issn2095-9389.2021.03.30.004
YU Kai-lun, WANG Bo, HAN Qing, CHEN Jian-she, LI Bin-chuan, WEI Shi-cheng. Effects of different mass ratios of tetrabutyl titanate on the microstructure and properties of GO−TiO2 composite materials[J]. Chinese Journal of Engineering, 2022, 44(8): 1360-1367. doi: 10.13374/j.issn2095-9389.2021.03.30.004
Citation: YU Kai-lun, WANG Bo, HAN Qing, CHEN Jian-she, LI Bin-chuan, WEI Shi-cheng. Effects of different mass ratios of tetrabutyl titanate on the microstructure and properties of GO−TiO2 composite materials[J]. Chinese Journal of Engineering, 2022, 44(8): 1360-1367. doi: 10.13374/j.issn2095-9389.2021.03.30.004

不同钛酸四丁酯含量对GO−TiO2复合材料组织结构和性能的影响

doi: 10.13374/j.issn2095-9389.2021.03.30.004
基金项目: 国家自然科学基金资助项目(51905543, 51675533, 51701238);国防科技卓越青年科学基金资助项目(2017-JCJQ-ZQ-001);中国博士后科学基金资助项目(2018M643857)
详细信息
    通讯作者:

    王博,E-mail: wangbobo421@163.com

    魏世丞,E-mail: wsc33333@163.com

  • 中图分类号: TB33

Effects of different mass ratios of tetrabutyl titanate on the microstructure and properties of GO−TiO2 composite materials

More Information
  • 摘要: 以氧化石墨烯和钛酸四丁酯为原料,采用一步水热法制备氧化石墨烯/二氧化钛(GO−TiO2)复合材料,研究不同钛酸四丁酯含量对GO−TiO2复合材料组织和性能的影响规律。通过扫描电镜(SEM)、X射线衍射(XRD)、红外光谱(IR)、拉曼光谱(RS)、紫外−可见分光光度计(UV−vis)、热重分析仪(TGA)等对复合材料的微观形貌、物相组成、结构、吸光性和热稳定性进行表征。研究结果表明,随着钛酸四丁酯含量的增加,有利于GO−TiO2复合材料的均匀分散,提高了GO−TiO2复合材料的吸光性和热稳定性,但钛酸四丁酯含量过高会使GO−TiO2复合材料分散性、吸光性和热稳定性下降。当氧化石墨烯质量为320 mg、钛酸四丁酯含量为100 mL时,反应生成的复合材料表面TiO2分散均匀,缺陷少,D峰与G峰的峰强比(ID/IG)值为0.91,氧化石墨烯和二氧化钛复合程度高,复合材料中的TiO2吸收边缘红移至可见光范围内,并且在440~800 nm可见光范围内的吸收峰明显增强,防腐防污能力增强,复合材料在800 ℃热稳定性相比于氧化石墨烯提高了84.89%。

     

  • 图  1  GO−TiO2的合成过程示意图

    Figure  1.  Schematic of the synthesis process of GO–TiO2

    图  2  不同钛酸四丁酯含量的GO−TiO2的SEM和EDX图. SEM:(a) GO; (b)1#;(c) 2#; (d)3#; (e)4#; (f) 5#; EDX : (g) 面扫; (h) 元素原子比

    Figure  2.  SEM and EDX images of GO–TiO2 composites with different mass ratios of tetrabuty titanate: SEM of (a) GO; (b) 1#; (c) 2#; (d) 3#; (e) 4#; (f) 5#; and EDS of (g) mapping; (h) atomic ratio of element

    图  3  不同钛酸四丁酯含量的GO−TiO2的XRD图

    Figure  3.  XRD images of GO–TiO2 composites with different mass ratios of tetrabutyl titanate

    图  4  氧化石墨烯和不同钛酸四丁酯含量的GO−TiO2的红外光谱

    Figure  4.  FT–IR spectra of GO and GO–TiO2 composites with different mass ratios of tetrabutyl titanate

    图  5  不同钛酸四丁酯含量的GO−TiO2的拉曼光谱图. (a) 波数为50~800 cm−1; (b) 波数为800~4000 cm−1

    Figure  5.  Raman spectra images of GO–TiO2 composites with different mass ratios of tetrabutyl titanate: (a) wavenumber of 50–800 cm−1; (b) wavenumber of 800–4000 cm−1

    图  6  不同钛酸四丁酯含量的GO−TiO2的紫外可见吸收光谱

    Figure  6.  UV−vis spectra of GO–TiO2 composites with different mass ratios of tetrabutyl titanate

    图  7  不同钛酸四丁酯含量的GO−TiO2的TG图

    Figure  7.  TG images of GO–TiO2 composites with different mass ratios of tetrabutyl titanate

    表  1  不同钛酸四丁酯的含量

    Table  1.   Different mass ratios of tetrabutyl titanate

    NumberGraphene oxide /mgTetrabutyl titanate/mL
    1#32040
    2#32060
    3#32080
    4#320100
    5#320120
    下载: 导出CSV

    表  2  不同钛酸四丁酯含量的GO−TiO2ID/IG

    Table  2.   ID/IG of GO–TiO2 composites with different mass ratios of tetrabutyl titanate

    NumberID/IG
    GO1.181
    1#1.069
    2#1.049
    3#1.002
    4#0.91
    5#0.948
    下载: 导出CSV
  • [1] Wang C Y. Hazards and protection of metal corrosion. Mech Manag Dev, 2012, 27(5): 111 doi: 10.3969/j.issn.1003-773X.2012.05.057

    王彩云. 金属腐蚀的危害及防护. 机械管理开发, 2012, 27(5):111 doi: 10.3969/j.issn.1003-773X.2012.05.057
    [2] Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China. Npj Mater Degrad, 2017, 1(1): 1 doi: 10.1038/s41529-017-0001-6
    [3] Hou B R, Zhang D, Wang P. Marine corrosion and protection: Current status and prospect. Bull Chin Acad Sci, 2016, 31(12): 1326

    侯保荣, 张盾, 王鹏. 海洋腐蚀防护的现状与未来. 中国科学院院刊, 2016, 31(12):1326
    [4] Wang B. Preparation and Protective Mechanism of Nano-Ti Polymer Anti-Corrosion Coating [Dissertation]. Chongqing: Chongqing University, 2017

    王博. 钛纳米聚合物防腐功能涂层制备及防护机理研究[学位论文]. 重庆: 重庆大学, 2017
    [5] Yang T, Cui Y N, Li Z S, et al. Enhancement of the corrosion resistance of epoxy coating by highly stable 3, 4, 9, 10-perylene tetracarboxylic acid functionalized graphene. J Hazard Mater, 2018, 357: 475 doi: 10.1016/j.jhazmat.2018.06.038
    [6] Aneja K S, Böhm H L M, Khanna A S, et al. Functionalised graphene as a barrier against corrosion. FlatChem, 2017, 1: 11 doi: 10.1016/j.flatc.2016.08.003
    [7] Zhang X, Xu J H, Li H L, et al. Study of corrosion protection anticorrosion coating with modified glass flake and polyphenylene sulfide. Paint Coat Ind, 2013, 43(7): 33 doi: 10.3969/j.issn.0253-4312.2013.07.008

    张昕, 许季海, 李红良, 等. 聚苯硫醚掺杂改性玻璃鳞片防腐涂层耐腐蚀性研究. 涂料工业, 2013, 43(7):33 doi: 10.3969/j.issn.0253-4312.2013.07.008
    [8] Chen W J, Shan J G, Wang W, et al. Coating technology and quality control of glass flake reinforced vinyl ester coating. Corros Prot, 2017, 38(2): 147 doi: 10.11973/fsyfh-201702013

    陈伟军, 单景刚, 王维, 等. 乙烯酯玻璃鳞片涂层的涂装技术及质量控制. 腐蚀与防护, 2017, 38(2):147 doi: 10.11973/fsyfh-201702013
    [9] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197 doi: 10.1038/nature04233
    [10] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896
    [11] Liu P P, Liu S Q, Gao H Y, et al. Preparation and properties of hydroxyapatite aerogel composite phase change materials. Chin J Eng, 2020, 42(1): 120

    刘盼盼, 刘斯奇, 高鸿毅, 等. 羟基磷灰石气凝胶复合相变材料的制备及其性能. 工程科学学报, 2020, 42(1):120
    [12] Wang Y X, Myers M, Staser J A. Electrochemical UV sensor using carbon quantum dot/graphene semiconductor. J Electrochem Soc, 2017, 165(4): H3001
    [13] Shui L, Zhang K, Yu H. Effect of graphene content on the microstructure and mechanical properties of graphene-reinforced Al-15Si-4Cu-Mg matrix composites. Chin J Eng, 2019, 41(9): 1162

    水丽, 张凯, 于宏. 石墨烯含量对石墨烯/Al-15Si-4Cu-Mg复合材料微观组织和力学性能的影响. 工程科学学报, 2019, 41(9):1162
    [14] Chen D, Feng H, Li J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem Rev, 2012, 112(11): 6027 doi: 10.1021/cr300115g
    [15] Shumaila, Khan S, Khan Z M S H, et al. Facile synthesis of highly conducting polypyrrole and reduced graphene oxide nanocomposites for low-turn-on electron field emitters. J Phys Chem Solids, 2020, 143: 109522 doi: 10.1016/j.jpcs.2020.109522
    [16] Tavakol M, Montazeri A, Aboutalebi S H, et al. Mechanical properties of graphene oxide: The impact of functional groups. Appl Surf Sci, 2020, 525: 146554 doi: 10.1016/j.apsusc.2020.146554
    [17] Suvarna K S, Binitha N N. Graphene preparation by jaggery assisted ball-milling of graphite for the adsorption of Cr(VI). Mater Today:Proc, 2020, 25: 236 doi: 10.1016/j.matpr.2020.01.209
    [18] Sun Y, Chen L, Yu J M, et al. Lightweight graphene oxide-based sponges with high compressibility and durability for dye adsorption. Carbon, 2020, 160: 54 doi: 10.1016/j.carbon.2020.01.009
    [19] Yang N, Yang T, Wang W, et al. Polydopamine modified polyaniline-graphene oxide composite for enhancement of corrosion resistance. J Hazard Mater, 2019, 377: 142 doi: 10.1016/j.jhazmat.2019.05.063
    [20] Chauhan D S, Quraishi M A, Ansari K R, et al. Graphene and graphene oxide as new class of materials for corrosion control and protection: Present status and future scenario. Prog Org Coat, 2020, 147: 105741 doi: 10.1016/j.porgcoat.2020.105741
    [21] Chang C I, Chang K H, Shen H H, et al. A unique two-step Hummers method for fabricating low-defect graphene oxide nanoribbons through exfoliating multiwalled carbon nanotubes. J Taiwan Inst Chem Eng, 2014, 45(5): 2762 doi: 10.1016/j.jtice.2014.05.030
    [22] O'Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737 doi: 10.1038/353737a0
    [23] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37 doi: 10.1038/238037a0
    [24] Braun J H, Baidins A, Marganski R E. TiO2 pigment technology: A review. Prog Org Coat, 1992, 20(2): 105 doi: 10.1016/0033-0655(92)80001-D
    [25] Yao L R, Dong L, Li X J, et al. Photocatalytic performance of TiO2-intercalated graphene oxide toward methylene blue. Shanghai Text Sci Technol, 2018, 46(11): 58

    姚理荣, 董莉, 李小娟, 等. TiO2插层氧化石墨烯降解亚甲基蓝性能研究. 上海纺织科技, 2018, 46(11):58
    [26] Morales-Torres S, Pastrana-Martínez L M, Figueiredo J L, et al. Design of graphene-based TiO2 photocatalysts—a review. Environ Sci Pollut Res, 2012, 19(9): 3676 doi: 10.1007/s11356-012-0939-4
    [27] Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2008, 2(7): 1487
    [28] Zhang H, Lv X, Li Y, et al. P25-graphene composite as a high performance photocatalyst. ACS Nano, 2010, 4(1): 380 doi: 10.1021/nn901221k
    [29] Liang Y Y, Wang H L, Sanchez Casalongue H, et al. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res, 2010, 3(10): 701 doi: 10.1007/s12274-010-0033-5
    [30] Wang J H, Liu R H, Yin X L. Adsorptive removal of tetracycline on graphene oxide loaded with titanium dioxide composites and photocatalytic regeneration of the adsorbents. J Chem Eng Data, 2018, 63(2): 409 doi: 10.1021/acs.jced.7b00816
    [31] Eder D, Windle A H. Carbon-inorganic hybrid materials: The carbon-nanotube/TiO2 interface. Adv Mater, 2008, 20(9): 1787 doi: 10.1002/adma.200702835
    [32] Zhou K F, Zhu Y H, Yang X L, et al. Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J Chem, 2011, 35(2): 353 doi: 10.1039/C0NJ00623H
    [33] Zhang Y P, Pan C X. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J Mater Sci, 2011, 46(8): 2622 doi: 10.1007/s10853-010-5116-x
    [34] Zhang H J, Xu P P, Du G D, et al. A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Res, 2011, 4(3): 274 doi: 10.1007/s12274-010-0079-4
    [35] Hu A M, Zhang X, Oakes K D, et al. Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals. J Hazard Mater, 2011, 189(1-2): 278 doi: 10.1016/j.jhazmat.2011.02.033
    [36] Zhang J, Liu M, Dou Y C, et al. Role of alloying elements in the mechanical behaviors of an Mg–Zn–Zr–Er alloy. Metall And Mat Trans A, 2014, 45(12): 5499 doi: 10.1007/s11661-014-2526-4
    [37] Tan Q. Study on the Preparation and Application of TiO2 and Its Graphene-Based Composite [Dissertation]. Changsha: Hunan University, 2017

    谭奇. TiO2及其石墨烯基复合材料的制备与应用研究[学位论文]. 长沙: 湖南大学, 2017
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  167
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-30
  • 网络出版日期:  2021-06-02
  • 刊出日期:  2022-07-06

目录

    /

    返回文章
    返回