• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向工业自动化的5G与TSN协同关键技术

李卫 孙雷 王健全 马彰超

李卫, 孙雷, 王健全, 马彰超. 面向工业自动化的5G与TSN协同关键技术[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.04.08.004
引用本文: 李卫, 孙雷, 王健全, 马彰超. 面向工业自动化的5G与TSN协同关键技术[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.04.08.004
LI Wei, SUN Lei, WANG Jian-quan, MA Zhang-chao. Key technologies to enable 5G and TSN coordination for industrial automation[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.04.08.004
Citation: LI Wei, SUN Lei, WANG Jian-quan, MA Zhang-chao. Key technologies to enable 5G and TSN coordination for industrial automation[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.04.08.004

面向工业自动化的5G与TSN协同关键技术

doi: 10.13374/j.issn2095-9389.2021.04.08.004
基金项目: 国家重点研发计划资助项目(2020YFB1708800);中央高校基本科研业务费专项资金资助项目(FRF-MP-20-37)
详细信息
    通讯作者:

    E-mail:sun_lei@ustb.edu.cn

  • 中图分类号: TN915.03;TP393.03

Key technologies to enable 5G and TSN coordination for industrial automation

More Information
  • 摘要: 面向工业制造领域数字化、网络化及智能化转型需求,简要介绍了时间敏感网络的起源及发展现状,并针对第三代合作伙伴计划(3GPP)中5G支持TSN的标准研究进行了阐述,重点针对5G与TSN协同面临的技术挑战进行了分析,进一步阐述两种异构网络间协同所需的时间同步、连接增强及统一资源管理等关键技术,最后给出5G-TSN协同网络在智能工厂中的应用场景,旨在深化推动5G融入工业控制领域,实现5G先进信息通信技术与工业应用的深入融合。

     

  • 图  1  IEEE802.1 Qcc集中管理架构图

    Figure  1.  IEEE 802.1Qcc centralized management architecture

    图  2  3GPP R16定义的5G TSN网桥架构

    Figure  2.  5G TSN bridge architecture defined by 3GPP R16

    图  3  边界时钟补偿方案示意图

    Figure  3.  Mechanism of the boundary time synchronization

    图  4  时钟信息透明传输方案示意图

    Figure  4.  Mechanism of the transparent mode of clock information

    图  5  基于SDN的5G-TSN管控架构

    Figure  5.  SDN-based 5G–TSN management architecture

    图  6  5G-TSN联合资源管理及QoS映射示意图

    Figure  6.  Key technologies for 5G–TSN joint management and QoS mapping

    图  7  5G-TSN网络在智能工厂中的应用场景示意图

    Figure  7.  Scenarios for 5G–TSN applied in a smart factory

  • [1] Wang J W. Technical requirement of future industrial internet. Telecommun Sci, 2019, 35(8): 26

    王俊文. 未来工业互联网发展的技术需求. 电信科学, 2019, 35(8):26
    [2] 5G Alliance for Connected Industrials and Automation. 5G for connected industries and automation (second edition) [R/OL]. 5G-ACIA (2019-02)[2021-04-08].https://5g-acia.org/wp-content/uploads/5G-ACIA_WP_5G-for-Connected-Industries-and-Automation-Second-Edition_SinglePages.pdf
    [3] Lu P, Li J H, Zhao W D. Applications of 5G in vertical industry. ZTE Technol J, 2019, 25(1): 67 doi: 10.12142/ZTETJ.201901011

    陆平, 李建华, 赵维铎. 5G在垂直行业中的应用. 中兴通讯技术, 2019, 25(1):67 doi: 10.12142/ZTETJ.201901011
    [4] 3GPP. Service requirements for the 5G system [S/OL]. 3GPP (2019-09-27)[2021-04-08].https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3107
    [5] Zhu J Y, Zhang H S, Chen J. TSN and 5G integrated deployment requirements and network architecture evolution. ZTE Technol J, 2021, 27(6): 47 doi: 10.12142/ZTETJ.202106009

    朱瑾瑜, 张恒升, 陈洁. TSN与5G融合部署的需求及网络架构演进. 中兴通讯技术, 2021, 27(6):47 doi: 10.12142/ZTETJ.202106009
    [6] 5G Alliance for Connected Industrials and Automation. Key 5G use cases and requirements [R/OL]. 5G-ACIA (2020-05)[2020-04-01].https://5g-acia.org/wp-content/uploads/5G-ACIA_WP_Key-5G-Use-Cases-and-Requirements_SinglePages.pdf
    [7] Institute of Electrical and Electronics Engineers. Time sensitive networking task group [J/OL]. Sciencepaper Online (2017-05-03) [2021-04-08]. http://www.ieee802.org/1/pages/tsn.html
    [8] Cong P Z, Tian Y, Gong X Y, et al. A survey of key protocol and application scenario of time-sensitive network. Telecommun Sci, 2019, 35(10): 31

    丛培壮, 田野, 龚向阳, 等. 时间敏感网络的关键协议及应用场景综述. 电信科学, 2019, 35(10):31
    [9] Finn N. Introduction to time-sensitive networking. IEEE Commun Stand Mag, 2018, 2(2): 22 doi: 10.1109/MCOMSTD.2018.1700076
    [10] Institute of Electrical and Electronics Engineering. IEEE Std 802.1Q-2018 IEEE Standard for Local and Metropolitan Area Networks—Bridges and Bridged Networks. New York: IEEE, 2018
    [11] Wang Y, Chen J D, Ning W, et al. A time-sensitive network scheduling algorithm based on improved ant colony optimization. Alex Eng J, 2021, 60(1): 107 doi: 10.1016/j.aej.2020.06.013
    [12] Institute of Electrical and Electronics Engineering. IEEE Std 802.1AS-2020 IEEE Standard for Local and Metropolitan Area Networks—Timing and Synchronization for Time-sensitive Applications. New York: IEEE, 2020
    [13] Ulbricht M, Acevedo J. Integrating time-sensitive networking. Computing Commun Networks, 2020: 401
    [14] Nasrallah A, Balasubramanian V, Thyagaturu A, et al. Reconfiguration algorithms for high precision communications in time sensitive networks // 2019 IEEE Globecom Workshops (GC Wkshps). Waikoloa, 2019: 1
    [15] Institute of Electrical and Electronics Engineering. P802.1Qcc/D2.0, Oct 2017 – IEEE draft standard for local and metropolitan area networks—media access control (MAC) bridges and virtual bridged local area networks amendment: Stream reservation protocol (SRP) enhancements and performance improvements [J/OL]. Sciencepaper Online (2017-01-01) [2021-04-08].https://ieeexplore.ieee.org/document/8118313
    [16] Institute of Electrical and Electronics Engineering. IEEE Std 802.1Qbv-2015 IEEE standard for local and metropolitan area networks—bridges and bridged networks - amendment 25: enhancements for scheduled traffic. New York: IEEE, 2015
    [17] Institute of Electrical and Electronics Engineering. 802.1Qbu-2016 – IEEE standard for local and metropolitan area networks — bridges and bridged networks — Amendment 26: Frame preemption [J/OL]. Sciencepaper Online (2016-08-30) [2021-04-08].https://ieeexplore.ieee.org/document/7553415
    [18] Institute of Electrical and Electronics Engineering. 802.1Qch-2017 – IEEE Standard for Local and metropolitan area networks—Bridges and bridged networks—Amendment 29: Cyclic queuing and forwarding [J/OL]. Sciencepaper Online (2017-06-28) [2021-12-03].https://ieeexplore.ieee.org/document/7961303
    [19] Nasrallah A, Thyagaturu A S, Alharbi Z, et al. Ultra-low latency (ULL) networks: The IEEE TSN and IETF DetNet standards and related 5G ULL research. IEEE Commun Surv Tutor, 2019, 21(1): 88 doi: 10.1109/COMST.2018.2869350
    [20] 3GPP. System Architecture for the 5G System (5GS) [S/OL]. 3GPP (2020-03-27)[2021-04-08].https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
    [21] 5G Alliance for Connected Industrials and Automation. Integration of 5G with time-sensitive networking for industrial communications [R/OL]. 5G-ACIA (2019-11)[2021-04-01].https://www.5g-acia.org/publications/integration-of-5g-with-time-sensitive-networking-for-industrial-communications
    [22] 3GPP. Policy and charging control framework for the 5G system (5GS); stage 2 [S/OL]. 3GPP (2019-12-22)[2021-04-08]. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3334
    [23] 3GPP. Procedures for the 5G System (5GS) [S/OL]. 3GPP (2019-12-22)[2021-04-08].https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3145
    [24] Zhang P Y, Pang X, Bi Y X, et al. DSCD: Delay sensitive cross-domain virtual network embedding algorithm. IEEE Trans Network Sci Eng, 2020, 7(4): 2913
    [25] Larrañaga A, Lucas-Estañ M C, Martinez I, et al. Analysis of 5G-TSN integration to support industry 4.0 // 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). Vienna, 2020: 1111
    [26] Thomas L, Le Boudec J Y. On time synchronization issues in time-sensitive networks with regulators and nonideal clocks. SIGMETRICS Perform Eval Rev, 2020, 48(1): 51 doi: 10.1145/3410048.3410078
    [27] Anand A, de Veciana G, Shakkottai S. Joint scheduling of URLLC and eMBB traffic in 5G wireless networks. IEEE/ACM Trans Netw, 2020, 28(2): 477 doi: 10.1109/TNET.2020.2968373
    [28] Ghosh A, Maeder A, Baker M, et al. 5G evolution: A view on 5G cellular technology beyond 3GPP release 15. IEEE Access, 2019, 7: 127639 doi: 10.1109/ACCESS.2019.2939938
    [29] Jiang X L, Luvisotto M, Pang Z B, et al. Reliable minimum cycle time of 5G NR based on data-driven channel characterization. IEEE Trans Ind Inform, 2021, 17(11): 7401 doi: 10.1109/TII.2021.3052922
    [30] Abreu R B, Pocovi G, Jacobsen T H, et al. Scheduling enhancements and performance evaluation of downlink 5G time-sensitive communications. IEEE Access, 2020, 8: 128106 doi: 10.1109/ACCESS.2020.3008598
    [31] Godor I, Luvisotto M, Ruffini S, et al. A look inside 5G standards to support time synchronization for smart manufacturing. IEEE Commun Stand Mag, 2020, 4(3): 14 doi: 10.1109/MCOMSTD.001.2000010
    [32] 3GPP. Architecture enhancements for non-3GPP access [S/OL]. 3GPP (2019-06-11)[2021-04-08].https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=850
    [33] Liu J D, Li D, Zeng P. Research on future industrial network architecture based on SDN and TSN. Autom Panor, 2018, 35(10): 56 doi: 10.3969/j.issn.1003-0492.2018.10.023

    刘金娣, 李栋, 曾鹏. 基于SDN&TSN的未来工业网络架构探究. 自动化博览, 2018, 35(10):56 doi: 10.3969/j.issn.1003-0492.2018.10.023
    [34] Institute of Electrical and Electronics Engineers. 802.1CB-2017 - IEEE Standard for local and metropolitan area networks—Frame replication and elimination for reliability [J/OL]. Sciencepaper Online (2017-10-27) [2021-04-08].https://ieeexplore.ieee.org/document/8091139
    [35] Belden Inc. Time sensitive networking [J/OL]. White Paper Online (2019-10) [2021-11-29].https://www.belden.com/dfsmedia/f1e38517e0cd4caa8b1acb6619890f5e/7897-source
    [36] Shu Z G, Taleb T. A novel QoS framework for network slicing in 5G and beyond networks based on SDN and NFV. IEEE Netw, 2020, 34(3): 256 doi: 10.1109/MNET.001.1900423
    [37] Khoshnevisan M, Joseph V, Gupta P, et al. 5G industrial networks with CoMP for URLLC and time sensitive network Architecture. IEEE J Sel Areas Commun, 2019, 37(4): 947
    [38] Vitturi S, Zunino C, Sauter T. Industrial communication systems and their future challenges: Next-generation Ethernet, IIoT, and 5G. Proc IEEE, 2019, 107(6): 944 doi: 10.1109/JPROC.2019.2913443
    [39] Cavalcanti D, Perez-Ramirez J, Rashid M M, et al. Extending accurate time distribution and timeliness capabilities over the air to enable future wireless industrial automation systems. Proc IEEE, 2019, 107(6): 1132 doi: 10.1109/JPROC.2019.2903414
    [40] Striffler T, Michailow N, Bahr M. Time-sensitive networking in 5th generation cellular networks - current state and open topics // 2019 IEEE 2nd 5G World Forum (5GWF). Dresden, 2019: 547
    [41] Cai Y K. Research on Production Scheduling Optimization of Intelligent Factory [Dissertation]. Mianyang: Southwest University of Science and Technology, 2020

    蔡跃坤. 智能工厂生产调度优化研究[学位论文]. 绵阳: 西南科技大学, 2020
    [42] Tao F, Zhang M. Digital twin shop-floor: A new shop-floor paradigm towards smart manufacturing. IEEE Access, 2017, 5: 20418 doi: 10.1109/ACCESS.2017.2756069
    [43] Bruckner D, Stănică M, Blair R, et al. An introduction to OPC UA TSN for industrial communication systems. Proc IEEE, 2019, 107(6): .1121 doi: 10.1109/JPROC.2018.2888703
    [44] Zhao W D, Jiang B Z. Thoughts and practice of 5G+ industrial Internet. ZTE Technol J, 2020, 26(5): 57 doi: 10.12142/ZTETJ.202005011

    赵维铎, 蒋伯章. 5G+工业互联网的思考与实践. 中兴通讯技术, 2020, 26(5):57 doi: 10.12142/ZTETJ.202005011
    [45] Moreno A, Velez G, Ardanza A, et al. Virtualisation process of a sheet metal punching machine within the Industry 4.0 vision. Int J Interact Des Manuf (Ijidem), 2017, 11(2): 365 doi: 10.1007/s12008-016-0319-2
  • 加载中
图(7)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  250
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 网络出版日期:  2021-04-16

目录

    /

    返回文章
    返回