• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短壁连采连充式胶结充填采煤技术应用研究

林海 杨仁树 李永亮 路彬 徐斌 范子儀 李剑楠

林海, 杨仁树, 李永亮, 路彬, 徐斌, 范子儀, 李剑楠. 短壁连采连充式胶结充填采煤技术应用研究[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.05.13.003
引用本文: 林海, 杨仁树, 李永亮, 路彬, 徐斌, 范子儀, 李剑楠. 短壁连采连充式胶结充填采煤技术应用研究[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.05.13.003
LIN Hai, YANG Ren-shu, LI Yong-liang, LU Bin, XU Bin, FAN Zi-yi, LI Jian-nan. Application of short-wall continuous mining and continuous backfilling cemented-fill mining technology[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.05.13.003
Citation: LIN Hai, YANG Ren-shu, LI Yong-liang, LU Bin, XU Bin, FAN Zi-yi, LI Jian-nan. Application of short-wall continuous mining and continuous backfilling cemented-fill mining technology[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.05.13.003

短壁连采连充式胶结充填采煤技术应用研究

doi: 10.13374/j.issn2095-9389.2021.05.13.003
基金项目: 国家自然科学基金资助项目(51804310和52174095)
详细信息
    通讯作者:

    E-mail: b20200019@xs.ustb.edu.cn

  • 中图分类号: TD822

Application of short-wall continuous mining and continuous backfilling cemented-fill mining technology

More Information
  • 摘要: 针对西部脆弱环境地区高强度开采产生的矸石减排及地表沉陷控制现实需要与意义,提出了采用短壁巷式胶结充填采煤技术。在研究短壁巷式胶结充填采煤技术开采原理基础上,介绍了该技术工作面布置方式、采充工艺流程;在充填材料方面,分析了多种充填原材料矿物成分和微观特性,并测试了不同配比条件下胶结充填材料的强度和流动特性;提出了该技术充填系统组成及整体设计思路,包括料浆制备系统、管道输送系统、监测系统和工作面充填系统四大部分。工业实践表明:短壁连采连充式胶结充填采煤技术在5 m厚近水平煤层中充实率可达98%以上,顶板最大下沉量为102 mm,地表最大下沉量为8.9 mm,共消耗了24.5万吨矸石,应用效果良好。

     

  • 图  1  技术原理

    Figure  1.  Technical principle

    图  2  采充顺序

    Figure  2.  Mining and backfilling sequence

    图  3  煤矸石。(a)矿物成分;(b)微观结构

    Figure  3.  Gangue: (a) mineral composition; (b) microstructure

    图  4  粉煤灰。(a)矿物成分;(b)微观结构;(c)粒径分布

    Figure  4.  Fly ash: (a) mineral composition; (b) microstructure; (c) particle size distribution

    图  5  水泥.(a)矿物成分;(b)微观结构;(c)粒径分布

    Figure  5.  Cement: (a) mineral composition; (b) microstructure; (c) particle size distribution

    图  6  充填体龄期强度. (a)不同质量分数的水泥;(b)不同质量分数的粉煤灰;(c)不同质量分数的料浆

    Figure  6.  Age strength of the filling body: (a) different mass fractions of cement; (b) different mass fractions of fly ash; (c) different mass fractions of slurry

    图  7  料浆塌落度和泌水率. (a)不同质量分数的水泥;(b)不同质量分数的粉煤灰;(c)不同质量分数的料浆

    Figure  7.  Slump and bleeding rate: (a) different mass fractions of cement; (b) different mass fractions of fly ash; (c) different mass fractions of slurry

    图  8  矸石破碎与料浆制备系统

    Figure  8.  Gangue crushing and slurry preparation system

    图  9  监测系统

    Figure  9.  Monitoring system

    图  10  工作面充填方式

    Figure  10.  Filling method of the working face

    图  11  察哈素煤矿

    Figure  11.  Chahasu Mine

    图  12  充填效果实拍

    Figure  12.  Photos of the backfilling operation

    图  13  井下监测.(a)煤柱与充填体受力;(b)顶板下沉量

    Figure  13.  Underground monitoring: (a) coal pillar and filling body pressure; (b) roof subsidence

    图  14  地表位移监测

    Figure  14.  Surface subsidence monitoring

  • [1] Research Group of China Mining. Research report on economic situation of China's coal industry from 2020 to 2021. China Coal, 2021, 47(3): 53 doi: 10.3969/j.issn.1006-530X.2021.03.008

    中矿(北京)煤炭产业景气指数研究课题组. 2020–2021年中国煤炭产业经济形势研究报告. 中国煤炭, 2021, 47(3):53 doi: 10.3969/j.issn.1006-530X.2021.03.008
    [2] Zhou N, Yao Y N, Song W J, et al. Present situation and prospect of coal gangue treatment technology. J Min Saf Eng, 2020, 37(1): 136

    周楠, 姚依南, 宋卫剑, 等. 煤矿矸石处理技术现状与展望. 采矿与安全工程学报, 2020, 37(1):136
    [3] Liu J G, Li X W, He T. Application status and prospect of backfill mining in Chinese coal mines. J China Coal Soc, 2020, 45(1): 141

    刘建功, 李新旺, 何团. 我国煤矿充填开采应用现状与发展. 煤炭学报, 2020, 45(1):141
    [4] Hu B N, Liu P L, Cui F, et al. Review and development status of backfill coal mining technology in China. Coal Sci Technol, 2020, 48(9): 39

    胡炳南, 刘鹏亮, 崔锋, 等. 我国充填采煤技术回顾及发展现状. 煤炭科学技术, 2020, 48(9):39
    [5] Research Group of National Key Basic Research Program of China(2013CB227900) (Basic Study on Geological Hazard Prevention and Environmental Protection in High Intensity Mining of Western Coal Area). Theory and method research of geological diaster prevention on high-intensity coal exloitation in the west areas. J China Coal Soc, 2017, 42(2): 267

    计划(2013CB227900)"西部煤炭高强度开采下地质灾害防治与环境保护基础研究"项目组. 西部煤炭高强度开采下地质灾害防治理论与方法研究进展. 煤炭学报, 2017, 42(2):267
    [6] Fan L M, Ma X D, Li Y H, et al. Geological disasters and control technology in high intensity mining area of western China. J China Coal Soc, 2017, 42(2): 276

    范立民, 马雄德, 李永红, 等. 西部高强度采煤区矿山地质灾害现状与防控技术. 煤炭学报, 2017, 42(2):276
    [7] Guo W B, Bai E H, Zhao G B. Current status and progress on overburden and surface damage and prevention technology of high-intensity mining. J China Coal Soc, 2020, 45(2): 509

    郭文兵, 白二虎, 赵高博. 高强度开采覆岩地表破坏及防控技术现状与进展. 煤炭学报, 2020, 45(2):509
    [8] Xu J M, Zhang J X, Huang Y L, et al. Experimental research on the compress deformation characteristic of waste-flyash and its application in backfilling fully mechanized coal mining technology. J Min Saf Eng, 2011, 28(1): 158 doi: 10.3969/j.issn.1673-3363.2011.01.030

    徐俊明, 张吉雄, 黄艳利, 等. 充填综采矸石-粉煤灰压实变形特性试验研究及应用. 采矿与安全工程学报, 2011, 28(1):158 doi: 10.3969/j.issn.1673-3363.2011.01.030
    [9] Li M, Zhang J X, Miao X X, et al. Strata movement under compaction of solid backfill body. J China Univ Min Technol, 2014, 43(6): 969

    李猛, 张吉雄, 缪协兴, 等. 固体充填体压实特征下岩层移动规律研究. 中国矿业大学学报, 2014, 43(6):969
    [10] Zhang J X, Li J, An T L, et al. Deformation characteristic of key stratum overburden by raw waste backfilling with fully-mechanized coal minning technology. J China Coal Soc, 2010, 35(3): 357

    张吉雄, 李剑, 安泰龙, 等. 矸石充填综采覆岩关键层变形特征研究. 煤炭学报, 2010, 35(3):357
    [11] Qi T Y, Feng G R, Guo Y X, et al. Experimental study on the changes of coal paste backfilling material performance during hydration process. J Min Saf Eng, 2015, 32(1): 42

    戚庭野, 冯国瑞, 郭育霞, 等. 煤矿膏体充填材料性能随龄期变化的试验研究. 采矿与安全工程学报, 2015, 32(1):42
    [12] Feng G R, Jia X Q, Guo Y X, et al. Study on mixture ratio of gangue-waste concrete cemented paste backfill. J Min Saf Eng, 2016, 33(6): 1072

    冯国瑞, 贾学强, 郭育霞, 等. 矸石-废弃混凝土胶结充填材料配比的试验研究. 采矿与安全工程学报, 2016, 33(6):1072
    [13] Wu J Y, Feng M M, Yu B Y, et al. Experimental study of strength and deformation characteristics of cemented waste rock backfills with continuous gradation. Rock Soil Mech, 2017, 38(1): 101

    吴疆宇, 冯梅梅, 郁邦永, 等. 连续级配废石胶结充填体强度及变形特性试验研究. 岩土力学, 2017, 38(1):101
    [14] Zhou Q, Xu H B, Liu J H. Unstable failure characteristics and performance improvement of water-high filling materials. J China Coal Soc, 2017, 42(5): 1123

    周茜, 徐怀兵, 刘娟红. 高水充填材料失稳破坏特征研究及性能改善. 煤炭学报, 2017, 42(5):1123
    [15] Feng G M, Ding Y, Zhu H J, et al. Experimental research on a superhigh-water packing material for mining and its micromorphology. J China Univ Min Technol, 2010, 39(6): 813

    冯光明, 丁玉, 朱红菊, 等. 矿用超高水充填材料及其结构的实验研究. 中国矿业大学学报, 2010, 39(6):813
    [16] Ding Y, Feng G M, Wang C Z. Experimental research on basic properties of superhigh-water packing material. J China Coal Soc, 2011, 36(7): 1087

    丁玉, 冯光明, 王成真. 超高水充填材料基本性能试验研究. 煤炭学报, 2011, 36(7):1087
    [17] Wang X F, Sun C D, Zhang D S, et al. Experimental study on engineering characteristics of super-high water filling body. J Min Saf Eng, 2014, 31(6): 852

    王旭锋, 孙春东, 张东升, 等. 超高水材料充填胶结体工程特性试验研究. 采矿与安全工程学报, 2014, 31(6):852
    [18] Miao X X, Zhang J X. Key technologies of integration of coal mining-gangue washing-backfilling and coal mining. J China Coal Soc, 2014, 39(8): 1424

    缪协兴, 张吉雄. 井下煤矸分离与综合机械化固体充填采煤技术. 煤炭学报, 2014, 39(8):1424
    [19] Deng X J, Zhang J X, Zhou N, et al. The research and application of longwall-roadway cemented backfilling mining technology in extra-thick coal seam. J Min Saf Eng, 2014, 31(6): 857

    邓雪杰, 张吉雄, 周楠, 等. 特厚煤层长壁巷式胶结充填开采技术研究与应用. 采矿与安全工程学报, 2014, 31(6):857
    [20] Zhang J X, Zhang Q, Ju F, et al. Theory and technique of greening mining integrating mining, separating and backfilling in deep coal resources. J China Coal Soc, 2018, 43(2): 377

    张吉雄, 张强, 巨峰, 等. 深部煤炭资源采选充绿色化开采理论与技术. 煤炭学报, 2018, 43(2):377
    [21] Zhang J X, Li M, Deng X J, et al. Method and application of extending mining upper limit under aquifer by gangue backfill mining. J Min Saf Eng, 2014, 31(2): 220

    张吉雄, 李猛, 邓雪杰, 等. 含水层下矸石充填提高开采上限方法与应用. 采矿与安全工程学报, 2014, 31(2):220
    [22] Jia L G, Zhang H X. Stability of backfill in long wall filling mining. J Min Saf Eng, 2019, 36(6): 1234

    贾林刚, 张华兴. 长壁充填开采充填体稳定性研究. 采矿与安全工程学报, 2019, 36(6):1234
    [23] Feng G M, Wang C Z, Li F K, et al. Research on bag-type filling mining with super-high-water material. J Min Saf Eng, 2011, 28(4): 602 doi: 10.3969/j.issn.1673-3363.2011.04.019

    冯光明, 王成真, 李凤凯, 等. 超高水材料袋式充填开采研究. 采矿与安全工程学报, 2011, 28(4):602 doi: 10.3969/j.issn.1673-3363.2011.04.019
    [24] Zhou H Q, Hou C J, Sun X K, et al. Solid waste paste filling for none-village-relocation coal mining. J China Univ Min Technol, 2004, 33(2): 154 doi: 10.3321/j.issn:1000-1964.2004.02.007

    周华强, 侯朝炯, 孙希奎, 等. 固体废物膏体充填不迁村采煤. 中国矿业大学学报, 2004, 33(2):154 doi: 10.3321/j.issn:1000-1964.2004.02.007
    [25] Xu J L, Zhu W B, Wang X Z. New method to predict the height of fractured water-conducting zone by location of key strata. J China Coal Soc, 2012, 37(5): 762

    许家林, 朱卫兵, 王晓振. 基于关键层位置的导水裂隙带高度预计方法. 煤炭学报, 2012, 37(5):762
    [26] Hu B N, Zhang W H, Gao Q C, et al. Test research on permanent pillar mining with coal refuse backfilling. Coal Sci Technol, 2006, 34(11): 46 doi: 10.3969/j.issn.0253-2336.2006.11.016

    胡炳南, 张文海, 高庆潮, 等. 矸石充填巷式开采永久煤柱试验研究. 煤炭科学技术, 2006, 34(11):46 doi: 10.3969/j.issn.0253-2336.2006.11.016
    [27] Yu Y H, Ma L Q. Application of roadway backfill mining in water-conservation coal mining: A case study in northern Shaanxi, China. Sustainability, 2019, 11(13): 3719 doi: 10.3390/su11133719
    [28] Lu B, Zhang X G, Li F, et al. Study and application of short-wall gangue cemented backfilling technology. J China Coal Soc, 2017, 42(Suppl 1): 7

    路彬, 张新国, 李飞, 等. 短壁矸石胶结充填开采技术与应用. 煤炭学报, 2017, 42(增刊1): 7
    [29] Zhang Y, Cao S G, Lai X P, et al. Study on the development mechanism and control of water-conducting fractures in short-wall block backfill mining. J Min Saf Eng, 2019, 36(6): 1086

    张云, 曹胜根, 来兴平, 等. 短壁块段式充填采煤覆岩导水裂隙发育机理及控制研究. 采矿与安全工程学报, 2019, 36(6):1086
    [30] Ma L Q, Xu Y J, Zhang D S, et al. Characteristics of aquiclude and surface deformation in continuous mining and filling with wall system for water conservation. J Min Saf Eng, 2019, 36(1): 30

    马立强, 许玉军, 张东升, 等. 壁式连采连充保水采煤条件下隔水层与地表变形特征. 采矿与安全工程学报, 2019, 36(1):30
    [31] Sun Q, Zhang J X, Yin W, et al. Study of stability of surrounding rock and characteristic of overburden strata movement with longwall roadway backfill coal mining. J China Coal Soc, 2017, 42(2): 404

    孙强, 张吉雄, 殷伟, 等. 长壁机械化掘巷充填采煤围岩结构稳定性及运移规律. 煤炭学报, 2017, 42(2):404
    [32] Me Y, Zhang X G, Cao Z, et al. Coal Mine Paste Filling Theory and Key Technology of Slurry Transportation. Xuzhou: China University of Mining and Technology Press, 2010

    孟毅, 张新国, 曹忠等. 煤矿膏体充填理论与料浆输送关键技术. 徐州: 中国矿业大学出版社, 2010
    [33] Yang B G. Coal Mine High-Concentration Cemented Filling Mining Technology. Beijing: China Coal Industry Publishing House, 2015

    杨宝贵. 煤矿高浓度胶结充填开采技术. 北京: 煤炭工业出版社, 2015
    [34] Liu P L, Zhang H X, Cui F, et al. Technology and practice of mechanized backfill mining for water protection with aeolian sand paste-like. J China Coal Soc, 2017, 42(1): 118

    刘鹏亮, 张华兴, 崔锋, 等. 风积砂似膏体机械化充填保水采煤技术与实践. 煤炭学报, 2017, 42(1):118
    [35] Zhang Z G, Shi X Z, Lin X F. Parameter optimization and transportation characteristics of backfilling pipe network based on CFD. Chin J Nonferrous Met, 2019, 29(10): 2411

    张宗国, 史秀志, 吝学飞. 基于CFD的充填管网参数优化及输送特性. 中国有色金属学报, 2019, 29(10):2411
    [36] Sun W M, Liu P L, Sun K H, et al. Research on flat seam filling technology for high filling ratio in Yuyang coal mine. Coal Technol, 2014, 33(12): 23

    孙万明, 刘鹏亮, 孙凯华, 等. 榆阳煤矿近水平煤层高充填率充填工艺技术研究. 煤炭技术, 2014, 33(12):23
  • 加载中
图(14)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  136
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-13
  • 网络出版日期:  2021-07-20

目录

    /

    返回文章
    返回