• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转子发动机径向密封片的研究综述

纪常伟 杨振宇 杨金鑫 汪硕峰 黄雄辉 常珂

纪常伟, 杨振宇, 杨金鑫, 汪硕峰, 黄雄辉, 常珂. 转子发动机径向密封片的研究综述[J]. 工程科学学报, 2022, 44(8): 1406-1424. doi: 10.13374/j.issn2095-9389.2021.06.02.002
引用本文: 纪常伟, 杨振宇, 杨金鑫, 汪硕峰, 黄雄辉, 常珂. 转子发动机径向密封片的研究综述[J]. 工程科学学报, 2022, 44(8): 1406-1424. doi: 10.13374/j.issn2095-9389.2021.06.02.002
JI Chang-wei, YANG Zhen-yu, YANG Jin-xin, WANG Shuo-feng, HUANG Xiong-hui, CHANG Ke. Research overview of rotary engine apex seals[J]. Chinese Journal of Engineering, 2022, 44(8): 1406-1424. doi: 10.13374/j.issn2095-9389.2021.06.02.002
Citation: JI Chang-wei, YANG Zhen-yu, YANG Jin-xin, WANG Shuo-feng, HUANG Xiong-hui, CHANG Ke. Research overview of rotary engine apex seals[J]. Chinese Journal of Engineering, 2022, 44(8): 1406-1424. doi: 10.13374/j.issn2095-9389.2021.06.02.002

转子发动机径向密封片的研究综述

doi: 10.13374/j.issn2095-9389.2021.06.02.002
基金项目: 科技部重点研发资助项目(2018YFB0105400);新能源汽车北京实验室资助项目(JK005015201601);北京电动车辆协同创新中心资助项目(38005015201502);北京市科技计划课题资助项目(Z181100004518006)
详细信息
    通讯作者:

    E-mail: chwji@bjut.edu.cn

  • 中图分类号: TK45+4.6

Research overview of rotary engine apex seals

More Information
  • 摘要: 径向密封片作为转子发动机最重要的密封部件,安装在转子的三个顶点,径向密封片直接暴露在高温高压燃气中,存在振拍、漏气和磨损三大关键问题,这些问题会导致称为“魔鬼爪痕”的缸体振纹的出现,这些问题直接影响转子发动机的工作性能和使用寿命。NSU、Mazda等公司对径向密封片的发展做出巨大,开发了多种型号径向密封片并采用了多种材料。随着材料技术的发展,一些新型材料与表面处理工艺可以应用于径向密封片,例如:碳纤维、石墨烯等纳米材料,激光表面处理、新型涂层等工艺。本文综述了NSU、Mazda和Curtiss-Wright在径向密封片上取得的成果,最后结合新型结构、新型材料与处理工艺,对径向密封片的未来发展提出建议。

     

  • 图  1  转子上的密封组件[10]

    Figure  1.  Sealing parts on the rotor[10]

    图  2  NSU公司和Mazda公司设计的径向密封片

    Figure  2.  Apex seals designed by NSU & Mazda

    图  3  处于上止点处的转子机

    Figure  3.  Rotary engine at top dead center (TDC)

    图  4  上止点位置的径向密封片. (a)上止点前径向密封片;(b)上止点后径向密封片

    Figure  4.  Apex seal at the top dead center: (a) apex seal before TDC; (b) apex seal after TDC

    图  5  NSU KM37转子机缸体上的波状磨损[12]

    Figure  5.  Chatter marks on the cylinder block of KM37[12]

    图  6  气缸型面振纹出现区域

    Figure  6.  Parts where the chatter marks occur in the cylinder block

    图  7  转子机气缸内的漏气路径

    Figure  7.  Gas leakage path of the rotary engine

    图  8  径向密封片处的漏气路径

    Figure  8.  Gas leakage paths in the apex seal

    图  9  工作腔内存气量随转速的变化[17]

    Figure  9.  Variation in the air volume in the chamber with rotating speed[17]

    图  10  不同位置的气体泄漏率示意图[19]

    Figure  10.  Gas leakage rate at different piston positions[19]

    图  11  不同位置的总漏气量示意图[19]

    Figure  11.  Schematic diagram of total gas leakage at different positions[19]

    图  12  火花塞腔处的漏气

    Figure  12.  Gas leakage in the spark plug cavity

    图  13  火花塞腔形状的优化[24]

    Figure  13.  Form optimization of the spark plug cavity[24]

    图  14  径向密封片不同时间的磨损量[25]

    Figure  14.  Wearing capacity of the apex seal at different time[25]

    图  15  向密封片最小油膜厚度分布[26]

    Figure  15.  Minimum oil film thickness distribution of the apex seal roof[26]

    图  16  不同旋转圈数下径向密封片的磨损深度[27]

    Figure  16.  Wear depth of the apex seal with different circles[27]

    图  17  三段组合式径向密封片

    Figure  17.  Three-piece split-type apex seal

    图  18  整体式与三段式径向密封片比较 (节气门全开)[29-30]

    Figure  18.  Three-piece apex seal compared to the single-piece apex seal (W.O.T) [29-30]

    图  19  开设切口的三片组合式径向密封片

    Figure  19.  Three-piece split-type apex seal with cavity

    图  20  KKM612发动机径向密封片工作原理[13]

    Figure  20.  Principle of the KKM612 rotary engine apex seal[13]

    图  21  交叉孔径向密封片[13]

    Figure  21.  Cross-hollow apex seal[13]

    图  22  摩擦系数与摩擦振动振幅的关系[13]

    Figure  22.  Relation between the friction coefficient and frictional vibration amplitude[13]

    图  23  整体式与组合式径向密封片

    Figure  23.  Solid-type and split-type apex seal

    图  24  设置有双弹簧的两段式径向密封片

    Figure  24.  Two-piece split-type apex seal with dual springs

    图  25  双弹簧工作原理示意图. (a) 弹簧Ⅰ工作;(b) 弹簧Ⅰ与Ⅱ工作

    Figure  25.  Working principle of the apex seal’s dual spring: (a) only spring Ⅰ works; (b) spring Ⅰ and spring Ⅱ work

    图  26  上下斜分割三段式径向密封片

    Figure  26.  Mazda three-piece split-type apex seal

    图  27  上下斜分割三段式径向密封片密封原理

    Figure  27.  Sealing principle of the Mazda three-piece apex seal

    图  28  RC1-60转子机密封结构[34]

    Figure  28.  Structure of RC1-60 rotary engine seals[34]

    图  29  不同年代Curtiss-Wright公司对转子机密封结构的改进[36]

    Figure  29.  Chronology of the Curtiss-Wright sealing grid development[36]

    图  30  平衡可伸缩径向密封装置[37]

    Figure  30.  Counterweight retracted seal[37]

    图  31  渗铝炭精径向密封片

    Figure  31.  Alumetizing carbon apex seal

    图  32  径向密封片圆弧面冷激处理[45]

    Figure  32.  Electron beam melting process for the apex seal and its cross section[45]

    图  33  石墨–铝与Ferro–TiC CSM块对镀铬环磨损特性[49]

    Figure  33.  Wear properties of a graphite–aluminum and Ferro–TiC CSM block against a chrome-plated ring[49]

    图  34  各种密封系统在室温下的摩擦特性[49]

    Figure  34.  Friction characteristics of various sealing systems at room temperature[49]

    图  35  各种密封系统在高温下的摩擦特性[49]

    Figure  35.  Friction characteristics of three systems at elevated temperatures[49]

    图  36  带喇叭状切口的径向密封片设计

    Figure  36.  New apex seal design with a trumpet-shaped notch

    图  37  带切口的密封片工作原理示意图. (a)上止点前径向密封片;(b)上止点后径向密封片

    Figure  37.  Principle of the apex seal with a trumpet-shaped notch: (a) apex seal before TDC; (b) apex seal after TDC

    图  38  带滚针的径向密封片设计

    Figure  38.  Apex seal design with a roller pin

    图  39  多密封片的径向密封片系统

    Figure  39.  Multi-apex sealing system

    图  40  悬臂式径向密封装置[55]

    Figure  40.  Cantilever flexure apex seal[55]

    图  41  DLC涂层表面与球磨铸铁的摩擦系数[56]

    Figure  41.  Friction coefficients of the DLC coated surface and ductile cast iron[56]

    图  42  激光表面纹理化处理后的径向密封片表面[58]

    Figure  42.  Laser surface textured seal surface[58]

    图  43  基于径向密封片的气缸型线设计[59]

    Figure  43.  Rotary engine profiles designed with an apex seal[59]

    图  44  碳的同素异构体

    Figure  44.  Carbon isotope isomer

    图  45  石墨烯增韧陶瓷的增韧机理示意图[67]. (a) 未增韧陶瓷;(b) 增韧陶瓷

    Figure  45.  Schematic illustration of the toughening mechanisms in the ceramic–GPL composite[67]: (a) untoughened ceramics; (b) toughened ceramics

    表  1  径向密封片材料的特性比较[31]

    Table  1.   Comparison of properties of radial seal materials

    Apex seal materialHardness
    (Hv)
    Bending strength/
    MPa
    Fracture toughness/
    (MPa·m1/2)
    Thermal shock
    resistance/°C
    Density/
    (g·cm−3)
    Carbon200–3003.5400–6002.1
    Fiber reinforced ceramics170012006.0>5503.3
    下载: 导出CSV

    表  2  纳米陶瓷材料力学性能的改善[70]

    Table  2.   Improvement of mechanical properties of nano-ceramic materials

    Nano-ceramic materials
    (matrix/nano-dispersed phase)
    Toughness/

    (MPa·m1/2)
    Intensity/
    MPa
    Maximum use temperature/℃
    Al2O3/SiC3.5–4.8350–1520800–1200
    Al2O3/Si3N43.5–4.7350–850800–1200
    MgO/SiC1.2–4.5340–700600–1400
    Si3N4/SiC4.5–7.5350–15501200–1400
    下载: 导出CSV
  • [1] Liu J X. Numerical Modeling and Simulation for Small-Scale Rotary Engine. Beijing: Beijing Institute of Technology Press, 2020

    刘金祥著. 小型转子发动机数值建模与仿真分析. 北京: 北京理工大学出版社, 2020
    [2] Pei H L, Zhou N J, Gao H L. The characteristics and improvement of rotary engines. Intern Combust Engines, 2006(3): 1 doi: 10.3969/j.issn.1000-6494.2006.03.001

    裴海灵, 周乃君, 高宏亮. 三角转子发动机的特点及其发展概况综述. 内燃机, 2006(3):1 doi: 10.3969/j.issn.1000-6494.2006.03.001
    [3] Xin D. Triangular Rotary Engine. Beijing: Science Press, 1981

    辛动. 三角转子发动机. 北京: 科学出版社, 1981
    [4] Amrouche F, Erickson P A, Varnhagen S, et al. An experimental analysis of hydrogen enrichment on combustion characteristics of a gasoline Wankel engine at full load and lean burn regime. Int J Hydrog Energy, 2018, 43(41): 19250 doi: 10.1016/j.ijhydene.2018.08.110
    [5] Su T. Experimental Investigation on the Combustion and Emissions Characteristics of a Rotary Engine with Hydrogen Addition [Dissertation]. Beijing: Beijing University of Technology, 2019

    苏腾. 掺氢转子机燃烧与排放特性的试验研究[学位论文]. 北京: 北京工业大学, 2019
    [6] Yang J X. Numerical Investigation of Hydrogen Enrichment on Flow Field and Combustion Process in a Gasoline Wankel Rotary Engine [Dissertation]. Beijing: Beijing University of Technology, 2019

    杨金鑫. 掺氢对汽油转子机流场及燃烧过程影响的数值模拟研究[学位论文]. 北京: 北京工业大学, 2019
    [7] Chen W. Investigation on Combustion Characteristics and New Combustion Mode in a Diesel Wankel Engine [Dissertation]. Zhenjiang: Jiangsu University, 2019

    陈伟. 柴油汪克尔发动机燃烧特性及其新型燃烧模式研究[学位论文]. 镇江: 江苏大学, 2019
    [8] Hubmann C, Beste F, Friedl H, et al. Single cylinder 25 kW range extender as alternative to a rotary engine maintaining high compactness and NVH performance [J/OL]. SAE International Online (2013-10-15) [2021-10-4].https://www.sae.org/publications/technical-papers/content/2013-32-9132/
    [9] Noga M. Application of the internal combustion engine as a range-extender for electric vehicles. Combustion Engines, 2013: 52
    [10] Spreitzer J, Zahradnik F, Geringer B. Implementation of a rotary engine (Wankel engine) in a CFD simulation tool with special emphasis on combustion and flow phenomena [J/OL]. SAE International Online (2015-4-14) [2021-10-4].https://saemobilus.sae.org/content/2015-01-0382/
    [11] Lu F, Yu N B. Triangular Rotary Engine. Beijing: National Defense Industry Press, 1990

    卢法, 余乃彪. 三角转子发动机. 北京: 国防工业出版社, 1990
    [12] Keller H. Small wankel engines. SAE Transactions, 1968: 2339
    [13] Shanghai Institute of Science and Technology Information. Foreign Triangle Piston Rotary Engine. Shanghai: Institute of Scientific and Technical Information of Shanghai Press, 1970

    上海科学技术情报所. 国外三角活塞旋转式发动机. 上海: 上海科学技术情报所出版社, 1970
    [14] Gupta A, Jayaram S. Wankel rotary engine's apex seal/trochoid wear chatter 'the devil's nail marks persist'. Int J Sci Res Publ (IJSRP), 2019, 9(4): 8802
    [15] Eberle M K, Klomp E D. An evaluation of the potential performance gain from leakage reduction in rotary engines. SAE Transactions, 1973: 454
    [16] Wang Z K, Cheng Y, Zuo Z X. Research on gas leakage of small rotary engine // Proceedings of the 8th Annual Conference of Chinese Internal Combustion Engine Society. Shanghai, 2010: 333

    王志宽, 程颖, 左正兴. 小型转子发动机漏气研究//中国内燃机学会第八届学术年会论文集. 上海, 2010:333
    [17] Ma C F, Wang D S, Ye J W, et al. Combustion and Heat Transfer of Rotary Engine. Beijing: China Communications Press, 1981

    马重芳, 王达三, 叶经纬, 等. 旋转活塞发动机的燃烧和传热. 北京: 人民交通出版社, 1981
    [18] Hsu Y L. Analysis of the dynamic apex seal leakage of wankel engine [Dissertation]. Taichung: Chung Hsing University, 2015

    許右龍. 轉子引擎動態氣封洩漏分析[学位论文]. 台中: 中興大學, 2015
    [19] Nagao A, Ohzeki H, Niura Y. Present status and future view of rotary engines. Automot Engine Altern, 1987: 183
    [20] Picard M, Tian T, Nishino T. Predicting gas leakage in the rotary engine—part I: Apex and corner seals. J Eng Gas Turbines Power, 2016, 138(6): 062503 doi: 10.1115/1.4031873
    [21] Fan B W, Zeng Y H, Zhang Y Y, et al. Research on the hydrogen injection strategy of a direct injection natural gas/hydrogen rotary engine considering apex seal leakage. Int J Hydrog Energy, 2021, 46(13): 9234 doi: 10.1016/j.ijhydene.2020.12.214
    [22] Fan B W, Wang Y G, Zhang Y Y, et al. Numerical investigation on the combustion performance of a natural gas/hydrogen dual fuel rotary engine under the action of apex seal leakage. Energy Fuels, 2021, 35(1): 770 doi: 10.1021/acs.energyfuels.0c03498
    [23] Zhang Y Y. Numerical Simulation of Combustion Process of Side-Ported Natural Gas Hydrogen-Doped Rotary Engine [Dissertation]. Zhenjiang: Jiangsu University, 2020

    张耀元. 端面进气天然气掺氢转子发动机燃烧过程的数值模拟研究[学位论文]. 镇江: 江苏大学, 2020
    [24] Yamaoka K, Tado H. Improvements of the rotary engine with a charge cooled rotor [J/OL]. SAE International Online (1972-2-1) [2021-10-4].https://saemobilus.sae.org/content/720466/
    [25] He Z L, Liu C J, Zhang M. Dynamic simulation of the wear of radial airproof patch of triangle rotor engine. J Chongqing Jiaotong Univ (Nat Sci), 2008, 27(5): 835

    贺泽龙, 刘成俊, 张宓. 三角转子发动机径向密封片磨损的动态仿真. 重庆交通大学学报(自然科学版), 2008, 27(5):835
    [26] He Z L, Liu C J, Zhang M, et al. The friction analysis of the radial airproof patch of the triangle rotor engine. J Chongqing Univ Sci Technol (Nat Sci Ed), 2008, 10(3): 50

    贺泽龙, 刘成俊, 张宓, 等. 三角转子发动机径向密封片的摩擦学分析. 重庆科技学院学报(自然科学版), 2008, 10(3):50
    [27] Jiang H Y, Zuo Z X, Liu J X. Wear simulation of apex seal in rotary engine under mixed lubrication //AIP Conference Proceedings, Busan, 2018: 03003.https://doi.org/10.1063/1.5039061
    [28] Froede W G. The NSU-Wankel rotating combustion engine. SAE Transactions, 1961, 69: 179
    [29] Froede W G. Recent developments in the Nsu wankel engine. Proceedings of the Institution of Mechanical Engineers:Automobile Division, 1965, 180(1): 279 doi: 10.1243/PIME_AUTO_1965_180_028_02
    [30] Froede W G. The rotary engine of the NSU spider[J/OL]. SAE International Online (1965-2-1) [2021-10-4].https://www.sae.org/publications/technical-papers/content/650722/
    [31] Shimizu R, Tadokoro T, Nakanishi T, et al. Mazda 4-rotor rotary engine for the Le Mans 24-hour endurance race [J/OL]. SAE International Online (1992-2-1) [2021-10-4]https://www.sae.org/publications/technical-papers/content/920309/
    [32] Ohkubo M, Tashima S, Shimizu R, et al. Developed technologies of the new rotary engine (RENESIS) [J/OL]. SAE International Online (2004-3-8) [2021-10-4].https://saemobilus.sae.org/content/2004-01-1790/
    [33] Fujimoto Y, Tatsutomi Y, Ozeki H, et al. Present and prospective technologies of rotary engine. SAE Transactions, 1987, 96(5): 87
    [34] Jones C. The Curtiss-Wright rotating combustion engines today. SAE Transactions, 1965, 73: 127
    [35] Jones C. A review of curtiss-wright rotary engine developments with respect to general aviation potential[J/OL]. SAE International Online (1979-2-1) [2021-10-4].https://saemobilus.sae.org/content/790621/
    [36] Jones C. A survey of Curtiss-Wright's 1958-1971 rotating combustion engine technological developments[J/OL]. SAE International Online (1972-2-1) [2021-10-4].https://saemobilus.sae.org/content/720468/
    [37] Jones C. Advanced rotary engine studies // General Aviation Propulsion Conference, Washington: 1980: 28
    [38] Zhuzhou Cemented Carbide Factory. Steel Knot Cemented Carbide. Beijing: Metallurgical Industry Press, 1982

    株洲硬质合金厂. 钢结硬质合金. 北京: 冶金工业出版社, 1982
    [39] Revolutionary Committee of Changchun Automobile Research Institute. Summary Report of QY650 Rotary Piston Engine Development Stage. Changchun: Revolutionary Committee of Changchun Automobile Research Institute, 1971

    长春汽车研究所革命委员会. QY650型旋转活塞发动机研制工作阶段总结报告. 长春: 长春汽车研究所革命委员会, 1971
    [40] Yamamoto K. Rotary piston engine. J Fuel Society Japan, 1965, 44(6): 449 doi: 10.3775/jie.44.6_449
    [41] Prasse H F, McCormick H E, Anderson R D. A critical analysis of the rotary engine sealing problem[J/OL]. U. S. Department of Energy International Online (1986-1-1) [2021-10-4].https://www.osti.gov/biblio/5730971
    [42] Muroki T. Recent technology development of high-powered rotary engine at Mazda. SAE transactions, 1984: 689
    [43] Yamamoto K, Kuroda T. Toyo Kogyo’s research and development on major rotary engine problems. SAE Transactions, 1970, 79: 216
    [44] Muroki T, Miyata J. Material technology development applied to rotary engine at Mazda[J/OL]. SAE International Online (1973-2-1) [2021-10-4].https://www.sae.org/publications/technical-papers/content/730118/
    [45] Yamamoto K. Rotary Engine. Hiroshima: Sankaido Co. Ltd. , 1981
    [46] Wang X M, Liu Y X, Dai L L, et al. Research on friction and wear behaviour of chilled iron. J Nanchang Univ (Eng Technol), 2001, 23(3): 53

    汪先明, 刘燕霞, 戴莉莉, 等. 激冷铸铁摩擦磨损性能的研究. 南昌大学学报(工科版), 2001, 23(3):53
    [47] Beijing Electron Tube Factory. Steel Bonded Alloy. Beijing: National Defense Industry Press, 1971

    北京电子管厂编. 钢结合金. 北京: 国防工业出版社, 1971
    [48] Zhou S Z. Hard Materials and Tools. Beijing: Metallurgical Industry Press, 2015

    周书助. 硬质材料与工具. 北京: 冶金工业出版社, 2015
    [49] Ellis J L, Mal K. New developments in powder metal sealing elements. Wear, 1975, 32(3): 327 doi: 10.1016/0043-1648(75)90320-8
    [50] Kamiya S, Shirasagi S. Suzuki production rotary engine, model RE-5 for powering motorcycles[J/OL]. SAE International Online (1977-2-1) [2021-10-4].https://www.sae.org/publications/technical-papers/content/770190/
    [51] Guo R S, Cai S, Ji H M. et al. Engineering Structural Ceramics. Tianjin: Tianjin University Press, 2002

    郭瑞松, 蔡舒, 季惠明, 等. 工程结构陶瓷. 天津: 天津大学出版社, 2002
    [52] Li Z Y. Improvement of cylinder radial sealing film in rotary engine. For Eng, 2011, 27(6): 48 doi: 10.3969/j.issn.1001-005X.2011.06.013

    李芝勇. 对转子发动机气缸径向密封片的改进. 森林工程, 2011, 27(6):48 doi: 10.3969/j.issn.1001-005X.2011.06.013
    [53] Rose S W, Yang D C H. Wide and multiple apex seals for the rotary engine. Mech Mach Theory, 2014, 74: 202 doi: 10.1016/j.mechmachtheory.2013.12.011
    [54] Martinez F C, Knobloch A J, Pisano A P. Apex seal design for the MEMS rotary engine power system // Proceedings of ASME 2003 International Mechanical Engineering Congress and Exposition. Washington, 2008: 157
    [55] Heppner J D, Walther D C, Pisano A P. Leakage flow analysis for a MEMS rotary engine // Proceedings of ASME 2003 International Mechanical Engineering Congress and Exposition. Washington, 2008: 327
    [56] Zhang S, Liu J X, Zhou Y. Effect of DLC coating on the friction power loss between apex seal and housing in small Wankel rotary engine. Tribol Int, 2019, 134: 365 doi: 10.1016/j.triboint.2019.02.005
    [57] Etsion I, Sher E. Improving fuel efficiency with laser surface textured piston rings. Tribol Int, 2009, 42(4): 542 doi: 10.1016/j.triboint.2008.02.015
    [58] Morris N, Hart G, Wong Y J, et al. Laser surface texturing of Wankel engine apex seals. Surf Topogr:Metrol Prop, 2020, 8(3): 034001 doi: 10.1088/2051-672X/ababf5
    [59] Warren S, Yang D C H. Design of rotary engines from the apex seal profile (Abbr. : Rotary engine design by apex seal). Mech Mach Theory, 2013, 64: 200
    [60] Dou P F. Research progress of silicon nitride ceramics toughened by carbon materials. Ceramics, 2019(6): 54 doi: 10.3969/j.issn.1002-2872.2019.06.009

    豆鹏飞. 碳材料增韧氮化硅陶瓷研究进展. 陶瓷, 2019(6):54 doi: 10.3969/j.issn.1002-2872.2019.06.009
    [61] Hao C Y, Yang M H, Yang H T, et al. Discussion on toughened silicon nitride ceramic composites by carbon nanotubes. Ceramics, 2005(2): 21 doi: 10.3969/j.issn.1002-2872.2005.02.005

    郝春云, 杨明辉, 杨海涛, 等. 碳纳米管增韧氮化硅陶瓷复合材料的探讨. 陶瓷, 2005(2):21 doi: 10.3969/j.issn.1002-2872.2005.02.005
    [62] Guo Z, Xin Q, Zang Y, et al. Effects of graphene oxide doping content and pH on energy storage performance of graphene aerogel. Chin J Eng, 2021, 43(2): 239

    郭志成, 辛青, 臧月, 等. 氧化石墨烯掺杂量与pH值对石墨烯气凝胶储能性能的影响. 工程科学学报, 2021, 43(2):239
    [63] Lee X J, Hiew B Y Z, Lai K C, et al. Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. J Taiwan Inst Chem Eng, 2019, 98: 163 doi: 10.1016/j.jtice.2018.10.028
    [64] Pu J B, Wang L P, Xue Q J. Progress of tribology of graphene and graphene-based composite lubricating materials. Tribology, 2014, 34(1): 93

    蒲吉斌, 王立平, 薛群基. 石墨烯摩擦学及石墨烯基复合润滑材料的研究进展. 摩擦学学报, 2014, 34(1):93
    [65] Zhao J, Luo X, Chen J, et al. Progress in the application of nanotechnology to magnesia refractories. Chin J Eng, 2021, 43(1): 76

    赵嘉亮, 罗旭东, 陈俊红, 等. 纳米技术在镁质耐火材料中应用的研究进展. 工程科学学报, 2021, 43(1):76
    [66] Hvizdoš P, Dusza J, Balázsi C. Tribological properties of Si3N4–graphene nanocomposites. J Eur Ceram Soc, 2013, 33(12): 2359 doi: 10.1016/j.jeurceramsoc.2013.03.035
    [67] Kvetková L, Duszová A, Hvizdoš P, et al. Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scr Mater, 2012, 66(10): 793 doi: 10.1016/j.scriptamat.2012.02.009
    [68] Wang X, Tan X Y, Yin Y S, et al. Analysis on toughening mechanisms of ceramic nano-composites. J Ceram, 2000, 21(2): 107 doi: 10.3969/j.issn.1000-2278.2000.02.009

    王昕, 谭训彦, 尹衍升, 等. 纳米复合陶瓷增韧机理分析. 陶瓷学报, 2000, 21(2):107 doi: 10.3969/j.issn.1000-2278.2000.02.009
    [69] Tian M Y, Shi E W, Zhong W Z, et al. Nano ceramics and nano ceramic powders. J Inorg Mater, 1998, 13(2): 129 doi: 10.3321/j.issn:1000-324X.1998.02.001

    田明原, 施尔畏, 仲维卓, 等. 纳米陶瓷与纳米陶瓷粉末. 无机材料学报, 1998, 13(2):129 doi: 10.3321/j.issn:1000-324X.1998.02.001
    [70] Zhang W Y. Research and applications of nanoceramics. Ceramics, 2019(5): 46

    张文毓. 纳米陶瓷材料研究与应用. 陶瓷, 2019(5):46
  • 加载中
图(45) / 表(2)
计量
  • 文章访问数:  374
  • HTML全文浏览量:  173
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 网络出版日期:  2021-07-18
  • 刊出日期:  2022-07-06

目录

    /

    返回文章
    返回