Effects of a simulated freezing construction environment on the mass concrete performance
-
摘要: 模拟大体积混凝土在冻结法施工环境的状态,将混凝土浇筑7 h后施加−5/60 ℃和−5/70 ℃温差,测试施加模拟环境后混凝土的超声波参数、抗压强度、劈裂抗拉强度、氯离子扩散系数和冲击倾向性,分析混凝土的扫描电镜微观形貌。结果表明,冻结施工环境对于混凝土内部会造成一定的损伤,且平行于加温方向的损伤要大于垂直方向,C50混凝土的损伤大于C70混凝土,温度梯度会加剧混凝土内部的损伤。模拟冻结环境会对混凝土抗压强度、劈裂抗拉强度、氯离子渗透性能和冲击倾向性造成不利影响,温差与性能降低率正相关,且这种影响对于低强度混凝土更加显著。模拟冻结环境造成混凝土试块的内部微观结构不均匀,低温端混凝土结构比较疏松,高温端结构比较致密,导致部分混凝土性能的降低。Abstract: Exhausted shallow resources have turned mining into deep mining, with the mining depth of most mines under construction being more than 1000 m. With the continuous increase of the mining depth of mineral resources, the thickness and strength grade of the shaft lining concrete increases, resulting in higher hydration heat. The freezing method is usually used in deep well construction, resulting in a high temperature on one side and a low temperature on the other side of the shaft wall concrete. The influence law of this environment on concrete needs to be studied. It is of great theoretical significance for deep well construction and service safety to find out the change law of the shaft wall concrete performance under a freezing construction environment. The temperature difference between −5/60 ℃ and −5/70 ℃ was applied to simulate the state of the mass concrete in the freezing method construction environment. The ultrasonic parameters, compressive strength, splitting tensile strength, chloride diffusion coefficient, and bursting liability of concrete under the simulated environment were studied, and the scanning electron microscope of the concrete was analyzed. Results show that the freezing construction environment will cause certain damage to the interior of the concrete, and the damage parallel to the heating direction is greater than that in the vertical direction. The damage of the C50 concrete is greater than that of the C70 concrete, and the temperature gradient will aggravate the internal damage of the concrete. The simulated freezing environment will have adverse effects on the compressive strength, splitting tensile strength, chloride ion permeability, and bursting liability of the concrete. The temperature difference has a positive correlation with the performance reduction rate, which becomes more significant for low-strength concrete. The internal microstructure of the concrete block is uneven due to the simulated freezing environment, the concrete structure at the low-temperature end is loose, and the structure at the high-temperature end is dense, resulting in the decrease of the concrete’s performance.
-
Key words:
- freezing method /
- mass concrete /
- bursting liability /
- deep shaft lining /
- ultrasonic measure
-
表 1 P.O 42.5水泥性能指标
Table 1. Main properties of cement
Water mass requirement for normal
consistency/%Initial setting
time/minFinal setting
time/minSpecific surface
area/(m2·kg−1)Soundness Flexural strength/MPa Compressive strength/MPa 3 d 28 d 3 d 28 d 29.2 162 226 392 Qualified 4.9 9.9 27.5 50.0 表 2 不同强度等级的混凝土配合比
Table 2. Mix proportions of concrete with different strengths
kg·m−3 Strength grade Cement Fly ash Slag powder Silica fume Sand Stone Water PC* C50 320 80 85 0 673 1077 155 5.82 C70 337 100 108 25 555 1126 140 9.69 Note:* is polycarboxylate superplasticizer for concrete. 表 3 混凝土在不同条件下的超声检测结果
Table 3. Ultrasonic testing results of concrete under different conditions
Strength grade Simulation condition/℃ Direction Amplitude/db Velocity/
(km·s−1)C50 −5/60 Vertical 101.8 5.68 −5/60 Parallel 99.8 5.42 Standard curing — 103.6 5.85 −5/70 Vertical 102.1 5.66 −5/70 Parallel 100.0 5.33 Standard curing — 104.2 5.94 C70 −5/60 Vertical 103.1 6.03 −5/60 Parallel 101.6 5.89 Standard curing — 104.8 6.14 −5/70 Vertical 103.3 6.08 −5/70 Parallel 100.2 5.85 Standard curing — 105.3 6.21 表 4 混凝土在不同温差模拟条件下的超声检测分析结果
Table 4. Analysis results of ultrasonic testing of concrete under different simulation conditions
Strength grade Temperature difference/℃ Relative variation ratio/% Vertical velocity Parallel velocity Vertical amplitude Parallel amplitude C50 −5/60 2.9 7.4 1.7 3.7 C50 −5/70 4.7 10.3 2.0 4.2 C70 −5/60 1.8 4.1 1.6 3.1 C70 −5/70 2.1 5.8 1.9 4.8 表 5 混凝土的冲击倾向性指标
Table 5. Bursting liability indexes of concrete
Group Brittleness Dynamic failure time,
TD/ msImpact energy
index, KEC50 Standard 19.6 480 1.78 C50 −5/60 ℃ 20.2 410 2.06 C50 −5/70 ℃ 21.2 380 2.32 C70 Standard 21.9 170 5.81 C70 −5/60 ℃ 22.8 140 6.32 C70 −5/70 ℃ 23.5 120 6.55 -
参考文献
[1] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417蔡美峰, 薛鼎龙, 任奋华. 金属矿深部开采现状与发展战略. 工程科学学报, 2019, 41(4):417 [2] Liu L Y, Ji H G, Wang T, et al. Mechanism of country rock damage and failure in deep shaft excavation under high pore pressure and asymmetric geostress. Chin J Eng, 2020, 42(6): 715刘力源, 纪洪广, 王涛, 等. 高渗透压和不对称围压作用下深竖井围岩损伤破裂机理. 工程科学学报, 2020, 42(6):715 [3] Dong J H, Wu X L, Shi L J, et al. Effect of shallow tunnel construction by horizontal freezing on adjacent orthogonal subgrades. Chin J Rock Mech Eng, 2020, 39(11): 2365董建华, 吴晓磊, 师利君, 等. 水平冻结施工浅埋隧道对邻近正交路基的作用分析. 岩石力学与工程学报, 2020, 39(11):2365 [4] Zhang J W, Liu S J, Zhang S. Ultrasonic time-frequency characteristics of water-rich fine sand during unidirectional freezing process. Chin J Rock Mech Eng, 2020, 39(5): 1061张基伟, 刘书杰, 张松. 富水细砂单向冻结超声波时频特性研究. 岩石力学与工程学报, 2020, 39(5):1061 [5] Gao X J, Li M Y, Zhang J W, et al. Field research on artificial freezing of subway cross passages in water-rich silty clay layers. Chin J Rock Mech Eng, 2021, 40(6): 1267郜新军, 李铭远, 张景伟, 等. 富水粉质黏土中地铁联络通道冻结法试验研究. 岩石力学与工程学报, 2021, 40(6):1267 [6] Ma H Y, Zhu C Q, Zhao P T, et al. Freezing method for rock cross-cut coal uncovering: Aging characteristic of effective freezing distance on injecting liquid nitrogen into coal seam. Adv Civ Eng, 2021: 8870768 [7] Zhang S, Yue Z R, Sun T C, et al. Evolution of ground freezing temperature field under sudden seepage with stable flow rate and discriminate method of seepage. J China Coal Soc, 2020, 45(12): 4017张松, 岳祖润, 孙铁成, 等. 突发定渗流作用下冻土温度场演化规律及判别方法. 煤炭学报, 2020, 45(12):4017 [8] Inada Y, Yokota K. Some studies of low temperature rock strength. Int J Rock Mech Min Sci Geomech Abstr, 1984, 21(3): 145 doi: 10.1016/0148-9062(84)91532-8 [9] Shan R L, Liu W J, Chai G J, et al. Experimental study on the expansion law of local horizontal frozen body under seepage. J China Coal Soc, 2019, 44(Suppl 2): 526单仁亮, 刘伟俊, 柴高竣, 等. 渗流作用下局部水平冻结体扩展规律试验研究. 煤炭学报, 2019, 44(增刊2): 526 [10] Song Y J, Zhang L T, Ren J X, et al. Creep property and model of red sandstone under low temperature environment. J China Coal Soc, 2020, 45(8): 2795宋勇军, 张磊涛, 任建喜, 等. 低温环境下红砂岩蠕变特性及其模型. 煤炭学报, 2020, 45(8):2795 [11] Yao Z S, Zhao L X, Cheng H, et al. Optimization design and measurement analysis on inter lining of high strength reinforced concrete frozen shaft lining with deep topsoil. J China Coal Soc, 2019, 44(7): 2125姚直书, 赵丽霞, 程桦, 等. 深厚表土层冻结井筒高强钢筋混凝土内壁设计优化与实测分析. 煤炭学报, 2019, 44(7):2125 [12] Jiao H Z, Sun G D, Chen X M, et al. Development of temperature field of multi circle freezing wall in deep alluvium. J China Coal Soc, 2018, 43(Suppl 2): 443焦华喆, 孙冠东, 陈新明, 等. 深厚冲积层多圈孔冻结壁温度场发展研究. 煤炭学报, 2018, 43(增刊2): 443 [13] Guan H D, Zhou X M, Xu Y, et al. Calculation of the early thermal stress in freezing vertical shaft lining. Met Mine, 2018(5): 44管华栋, 周晓敏, 徐衍, 等. 冻结立井井壁早期温度应力计算研究. 金属矿山, 2018(5):44 [14] Zhou Y Q, Liu W W. Application of granulated copper slag in massive concrete under saline soil environment. Constr Build Mater, 2021, 266: 121165 doi: 10.1016/j.conbuildmat.2020.121165 [15] Azenha M, Kanavaris F, Schlicke D, et al. Recommendations of RILEM TC 287-CCS: Thermo-chemo-mechanical modelling of massive concrete structures towards cracking risk assessment. Mater Struct, 2021, 54(4): 1 [16] Feng C Q, Zhao C, Yu X M, et al. A mathematical model of the expansion evolution of magnesium oxide in mass concrete based on hydration characteristics. Materials, 2021, 14(12): 3162 doi: 10.3390/ma14123162 [17] Bakour A, Ftima M B. Experimental investigations on the asymptotic fracture energy for large mass concrete specimens using wedge splitting test. Constr Build Mater, 2021, 279: 122405 doi: 10.1016/j.conbuildmat.2021.122405 [18] Zhou Y C, Liu J H, Huang S, et al. Performance change of shaft lining concrete under simulated coastal ultra-deep mine environments. Constr Build Mater, 2020, 230: 116909 doi: 10.1016/j.conbuildmat.2019.116909 [19] Liu J H, Zhao L, Ji H G. Influence of initial damage on degradation and deterioration of concrete under sulfate attack. Chin J Eng, 2017, 39(8): 1278刘娟红, 赵力, 纪洪广. 初始损伤对混凝土硫酸盐腐蚀劣化性能的影响. 工程科学学报, 2017, 39(8):1278 [20] Yang L, Yao Z S, Xue W P, et al. Preparation, performance test and microanalysis of hybrid fibers and microexpansive high-performance shaft lining concrete. Constr Build Mater, 2019, 223: 431 doi: 10.1016/j.conbuildmat.2019.06.230 [21] Liu J H, Zhao L, Song S M, et al. Ultrasonic velocity and acoustic emission properties of concrete eroded by sulfate and its damage mechanism. Chin J Eng, 2016, 38(8): 1075刘娟红, 赵力, 宋少民, 等. 混凝土硫酸盐腐蚀损伤的声波与声发射变化特征及机理. 工程科学学报, 2016, 38(8):1075 [22] Liu J H, Wang Z Q, Ji H G. Performance of shaft lining concrete under the coupling effect of early-age frozen soil pressure and negative temperature. J Univ Sci Technol Beijing, 2014, 36(8): 1000刘娟红, 王祖琦, 纪洪广. 早龄期冻结土压力与负温耦合作用的井壁混凝土性能. 北京科技大学学报, 2014, 36(8):1000 [23] Zhou Y C, Liu J H, Yang H T, et al. Failure patterns and energy analysis of shaft lining concrete in simulated deep underground environments. J Wuhan Univ Technol Mater Sci Ed, 2020, 35(2): 418 doi: 10.1007/s11595-020-2273-x [24] Liu J H, Zhou Y C, Yang H T, et al. Energy and damage characteristics of shaft lining concrete subjected to impact. J China Coal Soc, 2019, 44(10): 2983刘娟红, 周昱程, 杨海涛, 等. 冲击荷载作用下的井壁混凝土能量与损伤特性. 煤炭学报, 2019, 44(10):2983 [25] Liu J H, Zhou Y C, Ji H G. Energy evolution mechanism of shaft wall concrete under uniaxial loading and unloading compression. J China Coal Soc, 2018, 43(12): 3364刘娟红, 周昱程, 纪洪广. 单轴加卸载作用下井壁混凝土能量演化机理. 煤炭学报, 2018, 43(12):3364 [26] Zhou Y C, Liu J H, Ji H G, et al. Study on bursting liability of fiber reinforced shaft lining concrete based on temperature and compound salt. Mater Rep, 2019, 33(16): 2671 doi: 10.11896/cldb.18070169周昱程, 刘娟红, 纪洪广, 等. 温度‒复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究. 材料导报, 2019, 33(16):2671 doi: 10.11896/cldb.18070169 [27] Liu J H, Wu R D, Zhou Y C. Experiment of bursting liability of deep underground concrete under complex stress conditions. J China Coal Soc, 2018, 43(1): 79刘娟红, 吴瑞东, 周昱程. 基于深地复杂应力条件下混凝土冲击倾向性试验. 煤炭学报, 2018, 43(1):79 -