• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于剩余充电电量的锂离子电池模组内短路在线定量诊断算法

来鑫 李彬 孟正 李相俊 靳文涛 汪湘晋 马瑜涵 郑岳久

来鑫, 李彬, 孟正, 李相俊, 靳文涛, 汪湘晋, 马瑜涵, 郑岳久. 基于剩余充电电量的锂离子电池模组内短路在线定量诊断算法[J]. 工程科学学报, 2023, 45(1): 158-168. doi: 10.13374/j.issn2095-9389.2021.08.02.002
引用本文: 来鑫, 李彬, 孟正, 李相俊, 靳文涛, 汪湘晋, 马瑜涵, 郑岳久. 基于剩余充电电量的锂离子电池模组内短路在线定量诊断算法[J]. 工程科学学报, 2023, 45(1): 158-168. doi: 10.13374/j.issn2095-9389.2021.08.02.002
LAI Xin, LI Bin, MENG Zheng, LI Xiang-jun, JIN Wen-tao, WANG Xiang-jin, MA Yu-han, ZHENG Yue-jiu. Online quantitative diagnosis algorithm for the internal short circuit of a lithium-ion battery module based on the remaining charge capacity[J]. Chinese Journal of Engineering, 2023, 45(1): 158-168. doi: 10.13374/j.issn2095-9389.2021.08.02.002
Citation: LAI Xin, LI Bin, MENG Zheng, LI Xiang-jun, JIN Wen-tao, WANG Xiang-jin, MA Yu-han, ZHENG Yue-jiu. Online quantitative diagnosis algorithm for the internal short circuit of a lithium-ion battery module based on the remaining charge capacity[J]. Chinese Journal of Engineering, 2023, 45(1): 158-168. doi: 10.13374/j.issn2095-9389.2021.08.02.002

基于剩余充电电量的锂离子电池模组内短路在线定量诊断算法

doi: 10.13374/j.issn2095-9389.2021.08.02.002
基金项目: 国家电网公司科技项目(3A-20-304-008)
详细信息
    通讯作者:

    E-mail : laixin@usst.edu.cn

  • 中图分类号: TM912.4

Online quantitative diagnosis algorithm for the internal short circuit of a lithium-ion battery module based on the remaining charge capacity

More Information
  • 摘要: 通过对锂离子电池内短路的在线诊断可以有效预防热失控的发生。本文利用锂离子电池模组的充电曲线提出一种基于剩余充电电量的内短路在线定量诊断算法,并对该算法在不同的电压采集精度与采样周期、温度变化、老化程度等条件下进行仿真与实验验证。结果表明所提出的算法在一定条件下能准确定量地诊断出内短路电阻:(1) 对于10 Ω级别的严重内短路,即使在10 mV的采集精度、10 s的采样周期、变温度条件下也能得到很高的诊断精度。对于100 Ω级别的早期内短路,所诊断的内短路阻值比实际值偏小,诊断时间变长。为了提高早期内短路诊断的精度与时效性,电压采集精度与采样频率应该分别在1 mV 与 1 Hz 以上;(2) 电池老化会降低内短路的诊断精度,但是对于10 Ω级别的内短路影响很小。极端温度变化同样会影响内短路定量诊断精度,极端高温下的诊断误差比极端低温下的诊断误差要大,在极限低温(–20 ℃)下的内短路内阻的诊断误差在6%以内。研究结论为提高锂离子内短路的定量诊断精度具有重要意义。

     

  • 图  1  剩余充电电量估计原理

    Figure  1.  Remaining charge estimation principle

    图  2  基于RCC变化的内短路诊断原理

    Figure  2.  Principle of internal short circuit diagnosis based on the RCC change

    图  3  内短路模组建模.(a)电池组模型,(b)单体模型,(c)一阶RC模型

    Figure  3.  Internal short-circuit module modeling: (a) module model; (b) cell model; (c) first order RC model

    图  4  5 mV数据精度对算法的影响.(a) Sim03: RISC=100 Ω; (b) Sim04: RISC=10 Ω

    Figure  4.  Impact of the 5 mV data accuracy on the algorithm: (a) Sim03: RISC=100 Ω, (b) Sim04: RISC=10 Ω

    图  5  10 s采样周期对算法的影响.(a) Sim07: RISC=100 Ω; (b) Sim08: RISC=10 Ω

    Figure  5.  Impact of the 10 s sampling period on the algorithm: (a) Sim07: RISC=100 Ω; (b) Sim08: RISC=10 Ω

    图  6  等效内短路实验装置

    Figure  6.  Device of equivalent internal short circuit experiment

    图  7  电池老化对算法精度的影响.(a) Exp01:全新模组(RISC=100 Ω); (b) Exp08:老化模组(RISC=100 Ω)

    Figure  7.  Impact of battery aging on algorithm accuracy: (a) Exp01: new module (RISC=100 Ω); (b) Exp08: aging module (RISC=100 Ω)

    图  8  极限温度下内短路诊断实验结果.(a) Exp03:极限高温为55 ℃; (b) Exp05:极限低温为−20 ℃

    Figure  8.  Test results of internal short circuit diagnosis under extreme temperatures: (a) Exp03: extreme high temperature of 55 ℃; (b) Exp05: extreme high temperature of −20 ℃

    图  9  变温度下的内短路诊断实验结果.(a) Exp06: 25 ℃→15 ℃; (b) Exp07: 45 ℃→35 ℃

    Figure  9.  Test results of internal short circuit diagnosis under variable temperature: (a) Exp06: 25 ℃→15 ℃ (b) Exp07: 45 ℃→35 ℃

    表  1  各种仿真场景下的内短路诊断结果

    Table  1.   Diagnosis results of the internal short circuit in various simulation scenarios

    Simulation numberVoltage accuracy / mVSampling period / sRISC / ΩDiagnostic value / ΩError / %Detection time / h
    Sim010.5110095.474.5318.1
    Sim020.51109.534.718.1
    Sim031110071.9028.118.1
    Sim0411109.574.318.1
    Sim055110027.0372.965.3
    Sim0651108.8711.318.2
    Sim0710110017.8983.177.1
    Sim08101108.8611.418.1
    Sim09110100126.6626.618.1
    Sim10110109.613.518.1
    Sim11120100196.296.218.2
    Sim12120109.653.918.1
    下载: 导出CSV

    表  2  内短路阻值定量诊断实验结果

    Table  2.   Quantitative diagnosis test results of the internal short-circuit resistance

    Experiment numberAging degreeTemperature / ℃RISC / ΩDiagnostic value / ΩDiagnostic
    error / %
    Exp01New module251001055
    Exp02New module251010.66
    Exp03New module5510014646
    Exp04New module5100973
    Exp05New module−20100946
    Exp06New module25→1510013838
    Exp07New module45→351001022
    Exp08Aging module2510013232
    Exp09Aging module251011.212
    下载: 导出CSV
  • [1] Pan F W, Gong D L, Gao Y, et al. Lithium-ion battery state of charge estimation based on a robust H filter. Chin J Eng, 2021, 43(5): 693

    潘凤文, 弓栋梁, 高莹, 等. 基于鲁棒H滤波的锂离子电池SOC估计. 工程科学学报, 2021, 43(5):693
    [2] Lai X, Zheng Y J, Zhou L, et al. Electrical behavior of overdischarge-induced internal short circuit in lithium-ion cells. Electrochimica Acta, 2018, 278: 245 doi: 10.1016/j.electacta.2018.05.048
    [3] An F Q, Zhao H L, Cheng Z, et al. Development status and research progress of power battery for pure electric vehicles. Chin J Eng, 2019, 41(1): 22

    安富强, 赵洪量, 程志, 等. 纯电动车用锂离子电池发展现状与研究进展. 工程科学学报, 2019, 41(1):22
    [4] Song Y H, Yang Y X, Hu Z C. Present status and development trend of batteries for electric vehicles. Power Syst Technol, 2011, 35(4): 1 doi: 10.13335/j.1000-3673.pst.2011.04.009

    宋永华, 阳岳希, 胡泽春. 电动汽车电池的现状及发展趋势. 电网技术, 2011, 35(4):1 doi: 10.13335/j.1000-3673.pst.2011.04.009
    [5] Feng X N, Ouyang M G, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater, 2018, 10: 246 doi: 10.1016/j.ensm.2017.05.013
    [6] Chen Z Y, Xiong R, Sun F C. Research status and analysis for battery safety accidents in electric vehicles. J Mech Eng, 2019, 55(24): 93 doi: 10.3901/JME.2019.24.093

    陈泽宇, 熊瑞, 孙逢春. 电动汽车电池安全事故分析与研究现状. 机械工程学报, 2019, 55(24):93 doi: 10.3901/JME.2019.24.093
    [7] Su W, Zhong G B, Shen J N, et al. The progress in fault diagnosis techniques for lithium-ion batteries. Energy Storage Sci Technol, 2019, 8(2): 225 doi: 10.12028/j.issn.2095-4239.2018.0195

    苏伟, 钟国彬, 沈佳妮, 等. 锂离子电池故障诊断技术进展. 储能科学与技术, 2019, 8(2):225 doi: 10.12028/j.issn.2095-4239.2018.0195
    [8] Zheng Y F. Study on safety of lithium-ion battery under overuse conditions. Mar Electr Electron Eng, 2021, 41(2): 44 doi: 10.3969/j.issn.1003-4862.2021.02.011

    郑芸菲. 锂离子电池在滥用条件下的安全性研究. 船电技术, 2021, 41(2):44 doi: 10.3969/j.issn.1003-4862.2021.02.011
    [9] Gan W, Han X Y. A lithium ion battery internal short circuit fault diagnosis method based on wavelet noise reduction and curve similarity. Mach Des Manuf Eng, 2021, 50(5): 57 doi: 10.3969/j.issn.2095-509X.2021.05.012

    甘伟, 韩孝耀. 基于小波降噪-曲线相似程度的锂离子电池内短路故障诊断方法. 机械设计与制造工程, 2021, 50(5):57 doi: 10.3969/j.issn.2095-509X.2021.05.012
    [10] Chen M B, Bai F F, Song W J, et al. Multi-point internal short circuit and physical field variation of Li-ion battery. Battery Bimon, 2021, 51(2): 131 doi: 10.19535/j.1001-1579.2021.02.006

    陈明彪, 白帆飞, 宋文吉, 等. 锂离子电池多点内短路及物理场变化. 电池, 2021, 51(2):131 doi: 10.19535/j.1001-1579.2021.02.006
    [11] Zheng Y J, Ouyang M G, Lu L G, et al. On-line equalization for lithium-ion battery packs based on charging cell voltages: Part 1. Equalization based on remaining charging capacity estimation. J Power Sources, 2014, 247: 676
    [12] Wang H B, Li Y, Wang Q Z, et al. Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse. Chin J Eng, 2021, 43(5): 663

    王淮斌, 李阳, 王钦正, 等. 三元锂离子动力电池热失控及蔓延特性实验研究. 工程科学学报, 2021, 43(5):663
    [13] Wang Z P, Yuan C G, Li X Y. An analysis on challenge and development trend of safety management technologies for traction battery in new energy vehicles. Automot Eng, 2020, 42(12): 1606 doi: 10.19562/j.chinasae.qcgc.2020.12.002

    王震坡, 袁昌贵, 李晓宇. 新能源汽车动力电池安全管理技术挑战与发展趋势分析. 汽车工程, 2020, 42(12):1606 doi: 10.19562/j.chinasae.qcgc.2020.12.002
    [14] Zhang Y J, Wang H W, Feng X N, et al. Research progress on thermal runaway combustion characteristics of power lithiumion batteries. J Mech Eng, 2019, 55(20): 17

    张亚军, 王贺武, 冯旭宁, 等. 动力锂离子电池热失控燃烧特性研究进展. 机械工程学报, 2019, 55(20):17
    [15] Feng X N, Pan Y, He X M, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm. J Energy Storage, 2018, 18: 26 doi: 10.1016/j.est.2018.04.020
    [16] Kong X D, Zheng Y J, Ouyang M G, et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs. J Power Sources, 2018, 395: 358 doi: 10.1016/j.jpowsour.2018.05.097
    [17] Kenney B, Darcovich K, MacNeil D D, et al. Modelling the impact of variations in electrode manufacturing on lithium-ion battery modules. J Power Sources, 2012, 213: 391 doi: 10.1016/j.jpowsour.2012.03.065
    [18] Dubarry M, Truchot C, Cugnet M, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations. J Power Sources, 2011, 196(23): 10328
    [19] Guo Z Q, Xiong Q, Liang B H, et al. Consistency detection approach for lithium-ion battery pack based on current characteristics of bridging capacitors. High Voltage Engineering, 2022, 48(5): 1933

    郭自清, 熊庆, 梁博航, 等. 基于桥接电容电流特性的锂离子电池组一致性检测方法. 高电压技术, 2022, 48(5):1933
    [20] Chen C, Zhu R Y. Research on consistency simulation of lithium ion battery applied to special equipment. Electron Test, 2020(24): 43 doi: 10.3969/j.issn.1000-8519.2020.24.015

    陈晨, 朱瑞银. 应用于特种设备的锂离子电池一致性仿真研究. 电子测试, 2020(24):43 doi: 10.3969/j.issn.1000-8519.2020.24.015
    [21] Lai X, Qin C, Zheng Y J, et al. An adaptive capacity estimation scheme for lithium-ion battery based on voltage characteristic points in constant-current charging curve. Automot Eng, 2019, 41(1): 1 doi: 10.19562/j.chinasae.qcgc.2019.01.001

    来鑫, 秦超, 郑岳久, 等. 基于恒流充电曲线电压特征点的锂离子电池自适应容量估计方法. 汽车工程, 2019, 41(1):1 doi: 10.19562/j.chinasae.qcgc.2019.01.001
    [22] Zheng Y J, Lu L G, Han X B, et al. LiFePO4 battery pack capacity estimation for electric vehicles based on charging cell voltage curve transformation. J Power Sources, 2013, 226: 33 doi: 10.1016/j.jpowsour.2012.10.057
    [23] Hu X S, Tang X L. Review of modeling techniques for lithium-ion traction batteries in electric vehicles. J Mech Eng, 2017, 53(16): 20 doi: 10.3901/JME.2017.16.020

    胡晓松, 唐小林. 电动车辆锂离子动力电池建模方法综述. 机械工程学报, 2017, 53(16):20 doi: 10.3901/JME.2017.16.020
    [24] Wang J, Liu P, Hicks-Garner J, et al. Cycle-life model for graphite-LiFePO4 cells. J Power Sources, 2011, 196(8): 3942 doi: 10.1016/j.jpowsour.2010.11.134
    [25] Zhou L, Zheng Y J, Ouyang M G, et al. A study on parameter variation effects on battery packs for electric vehicles. J Power Sources, 2017, 364: 242 doi: 10.1016/j.jpowsour.2017.08.033
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  518
  • HTML全文浏览量:  186
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 网络出版日期:  2021-09-06
  • 刊出日期:  2023-01-01

目录

    /

    返回文章
    返回