Online quantitative diagnosis algorithm for the internal short circuit of a lithium-ion battery module based on the remaining charge capacity
-
摘要: 通过对锂离子电池内短路的在线诊断可以有效预防热失控的发生。本文利用锂离子电池模组的充电曲线提出一种基于剩余充电电量的内短路在线定量诊断算法,并对该算法在不同的电压采集精度与采样周期、温度变化、老化程度等条件下进行仿真与实验验证。结果表明所提出的算法在一定条件下能准确定量地诊断出内短路电阻:(1) 对于10 Ω级别的严重内短路,即使在10 mV的采集精度、10 s的采样周期、变温度条件下也能得到很高的诊断精度。对于100 Ω级别的早期内短路,所诊断的内短路阻值比实际值偏小,诊断时间变长。为了提高早期内短路诊断的精度与时效性,电压采集精度与采样频率应该分别在1 mV 与 1 Hz 以上;(2) 电池老化会降低内短路的诊断精度,但是对于10 Ω级别的内短路影响很小。极端温度变化同样会影响内短路定量诊断精度,极端高温下的诊断误差比极端低温下的诊断误差要大,在极限低温(–20 ℃)下的内短路内阻的诊断误差在6%以内。研究结论为提高锂离子内短路的定量诊断精度具有重要意义。Abstract: Lithium-ion batteries are widely used in energy storage and new energy electric vehicles due to their superior performance, but the internal short circuit problem of lithium-ion batteries is a safety hazard during usage for energy storage and vehicle battery packs. If it cannot be detected in time, the deepening of the internal short circuit will be accompanied by an increase in heat, which will cause thermal runaway and lead to safety accidents. Diagnosing whether the battery pack has an internal short circuit and quantitatively estimating the short circuit resistance of the battery cell that has the internal short circuit can effectively prevent the occurrence of thermal runaway. This study proposes a quantitative diagnosis algorithm of Internal short circuit (ISC) based on the remaining charge capacity based on the charging curve of the lithium-ion battery module. The simulation and experimental verification of the algorithm are carried out under the conditions of different voltage acquisition accuracies, sampling periods, temperatures, and aging degrees. The results show that the proposed algorithm can accurately and quantitatively diagnose the ISC under certain conditions: (1) For serious ISC of 10 Ω level, high diagnosis accuracy can be obtained even under the conditions of 10 mV acquisition accuracy, 10 s sampling period, and variable temperature. For early ISC of 100 Ω level, the ISC resistance is smaller than the actual value and the diagnosis time is longer. To improve the accuracy and timeliness of early ISC diagnosis, the voltage acquisition accuracy, and sampling frequency should be higher than 1 mV and 1 Hz, respectively. (2) Battery aging will reduce the accuracy of ISC diagnosis, but it has little effect on the 10 Ω level ISC, and the diagnostic error of the ISC resistance is less than 6% even at an extremely low temperature (−20 ℃). The conclusions are of great significance to improve the accuracy of quantitative diagnosis of ISC for lithium-ion batteries.
-
表 1 各种仿真场景下的内短路诊断结果
Table 1. Diagnosis results of the internal short circuit in various simulation scenarios
Simulation number Voltage accuracy / mV Sampling period / s RISC / Ω Diagnostic value / Ω Error / % Detection time / h Sim01 0.5 1 100 95.47 4.53 18.1 Sim02 0.5 1 10 9.53 4.7 18.1 Sim03 1 1 100 71.90 28.1 18.1 Sim04 1 1 10 9.57 4.3 18.1 Sim05 5 1 100 27.03 72.9 65.3 Sim06 5 1 10 8.87 11.3 18.2 Sim07 10 1 100 17.89 83.1 77.1 Sim08 10 1 10 8.86 11.4 18.1 Sim09 1 10 100 126.66 26.6 18.1 Sim10 1 10 10 9.61 3.5 18.1 Sim11 1 20 100 196.2 96.2 18.2 Sim12 1 20 10 9.65 3.9 18.1 表 2 内短路阻值定量诊断实验结果
Table 2. Quantitative diagnosis test results of the internal short-circuit resistance
Experiment number Aging degree Temperature / ℃ RISC / Ω Diagnostic value / Ω Diagnostic
error / %Exp01 New module 25 100 105 5 Exp02 New module 25 10 10.6 6 Exp03 New module 55 100 146 46 Exp04 New module 5 100 97 3 Exp05 New module −20 100 94 6 Exp06 New module 25→15 100 138 38 Exp07 New module 45→35 100 102 2 Exp08 Aging module 25 100 132 32 Exp09 Aging module 25 10 11.2 12 -
参考文献
[1] Pan F W, Gong D L, Gao Y, et al. Lithium-ion battery state of charge estimation based on a robust H∞ filter. Chin J Eng, 2021, 43(5): 693潘凤文, 弓栋梁, 高莹, 等. 基于鲁棒H∞滤波的锂离子电池SOC估计. 工程科学学报, 2021, 43(5):693 [2] Lai X, Zheng Y J, Zhou L, et al. Electrical behavior of overdischarge-induced internal short circuit in lithium-ion cells. Electrochimica Acta, 2018, 278: 245 doi: 10.1016/j.electacta.2018.05.048 [3] An F Q, Zhao H L, Cheng Z, et al. Development status and research progress of power battery for pure electric vehicles. Chin J Eng, 2019, 41(1): 22安富强, 赵洪量, 程志, 等. 纯电动车用锂离子电池发展现状与研究进展. 工程科学学报, 2019, 41(1):22 [4] Song Y H, Yang Y X, Hu Z C. Present status and development trend of batteries for electric vehicles. Power Syst Technol, 2011, 35(4): 1 doi: 10.13335/j.1000-3673.pst.2011.04.009宋永华, 阳岳希, 胡泽春. 电动汽车电池的现状及发展趋势. 电网技术, 2011, 35(4):1 doi: 10.13335/j.1000-3673.pst.2011.04.009 [5] Feng X N, Ouyang M G, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater, 2018, 10: 246 doi: 10.1016/j.ensm.2017.05.013 [6] Chen Z Y, Xiong R, Sun F C. Research status and analysis for battery safety accidents in electric vehicles. J Mech Eng, 2019, 55(24): 93 doi: 10.3901/JME.2019.24.093陈泽宇, 熊瑞, 孙逢春. 电动汽车电池安全事故分析与研究现状. 机械工程学报, 2019, 55(24):93 doi: 10.3901/JME.2019.24.093 [7] Su W, Zhong G B, Shen J N, et al. The progress in fault diagnosis techniques for lithium-ion batteries. Energy Storage Sci Technol, 2019, 8(2): 225 doi: 10.12028/j.issn.2095-4239.2018.0195苏伟, 钟国彬, 沈佳妮, 等. 锂离子电池故障诊断技术进展. 储能科学与技术, 2019, 8(2):225 doi: 10.12028/j.issn.2095-4239.2018.0195 [8] Zheng Y F. Study on safety of lithium-ion battery under overuse conditions. Mar Electr Electron Eng, 2021, 41(2): 44 doi: 10.3969/j.issn.1003-4862.2021.02.011郑芸菲. 锂离子电池在滥用条件下的安全性研究. 船电技术, 2021, 41(2):44 doi: 10.3969/j.issn.1003-4862.2021.02.011 [9] Gan W, Han X Y. A lithium ion battery internal short circuit fault diagnosis method based on wavelet noise reduction and curve similarity. Mach Des Manuf Eng, 2021, 50(5): 57 doi: 10.3969/j.issn.2095-509X.2021.05.012甘伟, 韩孝耀. 基于小波降噪-曲线相似程度的锂离子电池内短路故障诊断方法. 机械设计与制造工程, 2021, 50(5):57 doi: 10.3969/j.issn.2095-509X.2021.05.012 [10] Chen M B, Bai F F, Song W J, et al. Multi-point internal short circuit and physical field variation of Li-ion battery. Battery Bimon, 2021, 51(2): 131 doi: 10.19535/j.1001-1579.2021.02.006陈明彪, 白帆飞, 宋文吉, 等. 锂离子电池多点内短路及物理场变化. 电池, 2021, 51(2):131 doi: 10.19535/j.1001-1579.2021.02.006 [11] Zheng Y J, Ouyang M G, Lu L G, et al. On-line equalization for lithium-ion battery packs based on charging cell voltages: Part 1. Equalization based on remaining charging capacity estimation. J Power Sources, 2014, 247: 676 [12] Wang H B, Li Y, Wang Q Z, et al. Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse. Chin J Eng, 2021, 43(5): 663王淮斌, 李阳, 王钦正, 等. 三元锂离子动力电池热失控及蔓延特性实验研究. 工程科学学报, 2021, 43(5):663 [13] Wang Z P, Yuan C G, Li X Y. An analysis on challenge and development trend of safety management technologies for traction battery in new energy vehicles. Automot Eng, 2020, 42(12): 1606 doi: 10.19562/j.chinasae.qcgc.2020.12.002王震坡, 袁昌贵, 李晓宇. 新能源汽车动力电池安全管理技术挑战与发展趋势分析. 汽车工程, 2020, 42(12):1606 doi: 10.19562/j.chinasae.qcgc.2020.12.002 [14] Zhang Y J, Wang H W, Feng X N, et al. Research progress on thermal runaway combustion characteristics of power lithiumion batteries. J Mech Eng, 2019, 55(20): 17张亚军, 王贺武, 冯旭宁, 等. 动力锂离子电池热失控燃烧特性研究进展. 机械工程学报, 2019, 55(20):17 [15] Feng X N, Pan Y, He X M, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm. J Energy Storage, 2018, 18: 26 doi: 10.1016/j.est.2018.04.020 [16] Kong X D, Zheng Y J, Ouyang M G, et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs. J Power Sources, 2018, 395: 358 doi: 10.1016/j.jpowsour.2018.05.097 [17] Kenney B, Darcovich K, MacNeil D D, et al. Modelling the impact of variations in electrode manufacturing on lithium-ion battery modules. J Power Sources, 2012, 213: 391 doi: 10.1016/j.jpowsour.2012.03.065 [18] Dubarry M, Truchot C, Cugnet M, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations. J Power Sources, 2011, 196(23): 10328 [19] Guo Z Q, Xiong Q, Liang B H, et al. Consistency detection approach for lithium-ion battery pack based on current characteristics of bridging capacitors. High Voltage Engineering, 2022, 48(5): 1933郭自清, 熊庆, 梁博航, 等. 基于桥接电容电流特性的锂离子电池组一致性检测方法. 高电压技术, 2022, 48(5):1933 [20] Chen C, Zhu R Y. Research on consistency simulation of lithium ion battery applied to special equipment. Electron Test, 2020(24): 43 doi: 10.3969/j.issn.1000-8519.2020.24.015陈晨, 朱瑞银. 应用于特种设备的锂离子电池一致性仿真研究. 电子测试, 2020(24):43 doi: 10.3969/j.issn.1000-8519.2020.24.015 [21] Lai X, Qin C, Zheng Y J, et al. An adaptive capacity estimation scheme for lithium-ion battery based on voltage characteristic points in constant-current charging curve. Automot Eng, 2019, 41(1): 1 doi: 10.19562/j.chinasae.qcgc.2019.01.001来鑫, 秦超, 郑岳久, 等. 基于恒流充电曲线电压特征点的锂离子电池自适应容量估计方法. 汽车工程, 2019, 41(1):1 doi: 10.19562/j.chinasae.qcgc.2019.01.001 [22] Zheng Y J, Lu L G, Han X B, et al. LiFePO4 battery pack capacity estimation for electric vehicles based on charging cell voltage curve transformation. J Power Sources, 2013, 226: 33 doi: 10.1016/j.jpowsour.2012.10.057 [23] Hu X S, Tang X L. Review of modeling techniques for lithium-ion traction batteries in electric vehicles. J Mech Eng, 2017, 53(16): 20 doi: 10.3901/JME.2017.16.020胡晓松, 唐小林. 电动车辆锂离子动力电池建模方法综述. 机械工程学报, 2017, 53(16):20 doi: 10.3901/JME.2017.16.020 [24] Wang J, Liu P, Hicks-Garner J, et al. Cycle-life model for graphite-LiFePO4 cells. J Power Sources, 2011, 196(8): 3942 doi: 10.1016/j.jpowsour.2010.11.134 [25] Zhou L, Zheng Y J, Ouyang M G, et al. A study on parameter variation effects on battery packs for electric vehicles. J Power Sources, 2017, 364: 242 doi: 10.1016/j.jpowsour.2017.08.033 -