• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩爆数据库管理系统开发及应用

姚志宾 牛文静 张宇 胡磊 张伟

姚志宾, 牛文静, 张宇, 胡磊, 张伟. 岩爆数据库管理系统开发及应用[J]. 工程科学学报, 2022, 44(5): 865-875. doi: 10.13374/j.issn2095-9389.2021.08.12.002
引用本文: 姚志宾, 牛文静, 张宇, 胡磊, 张伟. 岩爆数据库管理系统开发及应用[J]. 工程科学学报, 2022, 44(5): 865-875. doi: 10.13374/j.issn2095-9389.2021.08.12.002
YAO Zhi-bin, NIU Wen-jing, ZHANG Yu, HU Lei, ZHANG Wei. Development and application of a rockburst database management system[J]. Chinese Journal of Engineering, 2022, 44(5): 865-875. doi: 10.13374/j.issn2095-9389.2021.08.12.002
Citation: YAO Zhi-bin, NIU Wen-jing, ZHANG Yu, HU Lei, ZHANG Wei. Development and application of a rockburst database management system[J]. Chinese Journal of Engineering, 2022, 44(5): 865-875. doi: 10.13374/j.issn2095-9389.2021.08.12.002

岩爆数据库管理系统开发及应用

doi: 10.13374/j.issn2095-9389.2021.08.12.002
基金项目: 国家自然科学基金资助项目(51839003)
详细信息
    通讯作者:

    E-mail: yaozhibin@mail.neu.edu.cn

  • 中图分类号: TU45

Development and application of a rockburst database management system

More Information
  • 摘要: 针对深部岩体工程科学前沿的岩爆研究难题,分析了制约其动态定量及智能化预警研究的挑战性问题。为突破挑战问题制约,采用面向对象的B/S+C/S结构,建立了岩爆数据库管理系统,包含岩爆案例数据库、微震波形数据库、微震时序数据库,具备多工程管理、详细数据采集、查询分析、结果导出等功能的岩爆数据库管理系统,成功实现了多工程、多源岩爆灾害信息的详细采集与有效管理。利用多个具有岩爆灾害的深埋岩体工程,对岩爆数据库管理系统进行了应用,取得了较好的效果。结果表明建立的岩爆数据库管理系统具有较好的适用性,可为不同工程岩爆类比研究、岩爆智能预警研究等提供科学、可靠的数据基础与参考。

     

  • 图  1  岩爆数据库管理系统架构图

    Figure  1.  Architecture diagram of the Rockburst Database Management System

    图  2  岩爆数据库管理系统结构图

    Figure  2.  Structure diagram of the Rockburst Database Management System

    图  3  岩爆数据库管理系统主界面

    Figure  3.  Main interface of the Rockburst Database Management System

    图  4  岩爆案例数据库界面

    Figure  4.  Interface of rockburst case database

    图  5  微震波形数据库界面

    Figure  5.  Interface of microseismic waveform database

    图  6  微震时序数据库界面

    Figure  6.  Interface of microseismic time-series database

    图  7  基于岩爆数据库管理系统的不同等级岩爆破坏特征

    Figure  7.  Analysis results of failure characteristics of different intensities of rockbursts based on the Rockburst Database Management System

    图  8  基于岩爆数据库管理系统的岩爆智能预警结果

    Figure  8.  Rockburst intelligent warning results based on the Rockburst Database Management System

    图  9  预警区域微震活动特征。(a)微震活动时空分布;(b)微震活动时序

    Figure  9.  Characteristics of microseismicity in the rockburst warning area: (a) temporal and spatial distribution of microseismicity; (b) time series of microseismicity

    图  10  岩爆预警结果与实际发生情况。(a)岩爆预警结果;(b)岩爆实际发生情况

    Figure  10.  Rockburst warning results and actual occurrence: (a) rockburst warning results; (b) actual occurrence

    表  1  岩爆数据库管理系统主要内容

    Table  1.   Main contents of the Rockburst Database Management System

    Database typeMain contentSpecific information
    Rockburst
    case database
    Basic information of the projectProject overview, layout of the microseismic monitoring system, excavation method, blasting time, geological survey information, and excavation and support design information
    Basic information of rockburstsTime of occurrence, time lag behind blasting, duration, occurrence station, type, intensity, and occurrence process description
    Crater and rock block informationShape and volume of the crater, location of the crater, maximum ejection distance, maximum depth of the crater, and shape of the rockburst block
    Geological information of surrounding rocksLithology, rock mass structure type, quality grade of the surrounding rocks, groundwater conditions, occurrence of structural planes, and filling condition
    Initial support and damage informationTime and type of the initial support of surrounding rocks, initial support failure, time for danger as well as slag removal in the rockburst area, and downtime
    New support measure informationNew support type, support time, support area, and support parameters
    Original rock stress and strength informationBuried depth, direction and magnitude of principal stress, uniaxial compressive strength of rock, strain energy index, and brittleness index
    Attachment informationRockburst video, picture, construction drawings, and construction organization plan
    Microseismic waveform databaseMicroseismic waveform fileWaveform data of all microseismic information monitored
    Waveform typeBlasting waveform, rock fracture waveform, mechanical vibration waveform, and electrical noise waveform
    Waveform characteristic parametersP-wave first-arrival, S-wave first-arrival, overall ringing rate, maximum amplitude, maximum amplitude position, and dominant frequency
    Microseismic monitoring systemIMS, SSS, ESG, and SOS
    Sensor type and quantityUniaxial velocity type, uniaxial acceleration type, triaxial velocity type, triaxial acceleration type, and number of sensors
    Sensor installation modeTemporary installation in the hole, permanent installation in the hole, and installation of wave guide rod outside the hole
    Microseismic sequence databaseMicro-fracture information fileTime, coordinate, energy, apparent volume, magnitude, and other characteristic parameter information of the rock mass fracture event
    Blasting information fileBlasting time, blasting position, and other information
    Microseismic event extraction areaStart chainage of warning area, tunnel face chainage, and end chainage of warning area
    Data continuityMonitoring the equipment operation and whether the monitoring data are continuous
    Microseismic sequence fileMicroseismic time series data file generated through calculation
    下载: 导出CSV
  • [1] Qian Q H. Relying on unique advantages of China, accelerate the great goal of becoming a powerful country through science and technology. Sci Technol Rev, 2020, 38(10): 1

    钱七虎. 依托中国的独特优势, 加速迈向科技强国的伟大目标. 科技导报, 2020, 38(10):1
    [2] Zheng Z X, Sun Q Q. Sichuan-Tibet railway tunnel project. Tunn Constr, 2017, 37(8): 1049

    郑宗溪, 孙其清. 川藏铁路隧道工程. 隧道建设, 2017, 37(8):1049
    [3] Feng X T, Chen B R, Zhang C Q. Mechanism, Warning and Dynamic Control of Rockburst Development Processes. Beijing: Science Press, 2013

    冯夏庭, 陈炳瑞, 张传庆. 岩爆孕育过程的机制、预警与动态调控. 北京: 科学出版社, 2013
    [4] Feng X T. Rockburst: Mechanism, Monitoring, Warning and Mitigation. London: Elsevier-Health Sciences Division, 2017
    [5] Zhou J, Li X B, Mitri H S. Evaluation method of rockburst: State-of-the-art literature review. Tunn Undergr Space Technol, 2018, 81: 632 doi: 10.1016/j.tust.2018.08.029
    [6] Liang W Z, Dai B, Zhao G Y, et al. A scientometric review on rockburst in hard rock: Two decades of review from 2000 to 2019. Geofluids, 2020(12): 1
    [7] Feng X T, Xiao Y X, Feng G L, et al. Study on the development processes of rockbursts. Chin J Rock Mech Eng, 2019, 38(4): 649

    冯夏庭, 肖亚勋, 丰光亮, 等. 岩爆孕育过程研究. 岩石力学与工程学报, 2019, 38(4):649
    [8] Feng X T. Adaptive pattern recognition to predict rockbursts in underground openings. J Northeast Univ, 1994, 15(5): 471

    冯夏庭. 地下峒室岩爆预报的自适应模式识别方法. 东北大学学报, 1994, 15(5):471
    [9] Feng X T, Webber S, Ozbay M U. Neural network assessment of rockburst risks for deep gold mines in South Africa. Trans Nonferrous Met Soc China, 1998, 8(2): 335
    [10] Feng X T, Wang Y J. New development in researching rockburst induced by mining at great depth and its control strategies. China Min Mag, 1998, 7(5): 42

    冯夏庭, 王泳嘉. 深部开采诱发的岩爆及其防治策略的研究进展. 中国矿业, 1998, 7(5):42
    [11] Feng G L, Feng X T, Chen B R, et al. A microseismic method for dynamic warning of rockburst development processes in tunnels. Rock Mech Rock Eng, 2015, 48(5): 2061 doi: 10.1007/s00603-014-0689-3
    [12] Dong L J, Li X B, Peng K. Prediction of rockburst classification using Random Forest. Trans Nonferrous Met Soc China, 2013, 23(2): 472 doi: 10.1016/S1003-6326(13)62487-5
    [13] Li T Z, Li Y X, Yang X L. Rock burst prediction based on genetic algorithms and extreme learning machine. J Central South Univ, 2017, 24(9): 2105 doi: 10.1007/s11771-017-3619-1
    [14] Li N, Jimenez R. A logistic regression classifier for long-term probabilistic prediction of rock burst hazard. Nat Hazards, 2018, 90(1): 197 doi: 10.1007/s11069-017-3044-7
    [15] Xiao Y X, Feng X T, Hudson J A, et al. ISRM suggested method for in situ microseismic monitoring of the fracturing process in rock masses. Rock Mech Rock Eng, 2016, 49(1): 343 doi: 10.1007/s00603-015-0859-y
    [16] Mei S M, Hu X C, Su G S, et al. Model test study of the influence of intermediate principal stress on rockburst in tunnel. Rock Soil Mech, 2019, 40(10): 3959

    梅诗明, 胡小川, 苏国韶, 等. 中间主应力对隧洞岩爆影响的模型试验研究. 岩土力学, 2019, 40(10):3959
    [17] Feng G L, Feng X T, Xiao Y X, et al. Characteristic microseismicity during the development process of intermittent rockburst in a deep railway tunnel. Int J Rock Mech Min Sci, 2019, 124: 104135 doi: 10.1016/j.ijrmms.2019.104135
    [18] Xu N W, Li T B, Dai F, et al. Microseismic monitoring of strainburst activities in deep tunnels at the Jinping II hydropower station, China. Rock Mech Rock Eng, 2016, 49(3): 981 doi: 10.1007/s00603-015-0784-0
    [19] Xiao Y X, Feng X T, Li S J, et al. Rock mass failure mechanisms during the evolution process of rockbursts in tunnels. Int J Rock Mech Min Sci, 2016, 83: 174 doi: 10.1016/j.ijrmms.2016.01.008
    [20] Xue Y G, Bai C H, Kong F M, et al. A two-step comprehensive evaluation model for rockburst prediction based on multiple empirical criteria. Eng Geol, 2020, 268: 105515 doi: 10.1016/j.enggeo.2020.105515
    [21] Pu Y Y, Apel D B, Liu V, et al. Machine learning methods for rockburst prediction-state-of-the-art review. Int J Min Sci Technol, 2019, 29(4): 565 doi: 10.1016/j.ijmst.2019.06.009
    [22] Niu W J, Feng X T, Yao Z B, et al. Method for Screening Microseismic Events for Rockburst Warning in Deep Tunnel: China Patent, CN201910937940.6. 2019-12-24

    牛文静, 冯夏庭, 姚志宾, 等. 一种用于深埋隧道岩爆预警微震事件筛选的方法: 中国专利, 201910937940.6. 2019-12-24
    [23] Zhang W, Feng X T, Bi X, et al. An arrival time picker for microseismic rock fracturing waveforms and its quality control for automatic localization in tunnels. Comput Geotech, 2021, 135: 104175 doi: 10.1016/j.compgeo.2021.104175
    [24] Niu W J, Feng X T, Xiao Y X, et al. Identification of potential high-stress hazards in deep-buried hard rock tunnel based on microseismic information: A case study. Bull Eng Geol Environ, 2021, 80: 1265 doi: 10.1007/s10064-020-01973-x
    [25] Hu L, Feng X T, Bi X, et al. Tunnel Rockburst Warning Method Based on Microseismic Information and Deep Convolutional Neural Network: China Patent, 201910560076.2. 2019-10-01

    胡磊, 冯夏庭, 毕鑫, 等. 基于微震信息和深度卷积神经网络的隧洞岩爆预警方法: 中国专利, 201910560076.2. 2019-10-01
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  80
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2022-05-05

目录

    /

    返回文章
    返回