• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于固液两相流模拟的选矿循环水深度澄清装置优化

胡文韬 田凯 李佳鸿 梁思懿 宋超 李杰 刘欣伟 王化军

胡文韬, 田凯, 李佳鸿, 梁思懿, 宋超, 李杰, 刘欣伟, 王化军. 基于固液两相流模拟的选矿循环水深度澄清装置优化[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.10.01.003
引用本文: 胡文韬, 田凯, 李佳鸿, 梁思懿, 宋超, 李杰, 刘欣伟, 王化军. 基于固液两相流模拟的选矿循环水深度澄清装置优化[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.10.01.003
HU Wen-Tao, TIAN Kai, LI Jia-hong, LIANG Si-yi, SONG Chao, LI Jie, LIU Xin-wei, WANG Hua-Jun. Optimization of depth clarification device for beneficiation circulating water based on solid-liquid two-phase flow simulation[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.10.01.003
Citation: HU Wen-Tao, TIAN Kai, LI Jia-hong, LIANG Si-yi, SONG Chao, LI Jie, LIU Xin-wei, WANG Hua-Jun. Optimization of depth clarification device for beneficiation circulating water based on solid-liquid two-phase flow simulation[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.10.01.003

基于固液两相流模拟的选矿循环水深度澄清装置优化

doi: 10.13374/j.issn2095-9389.2021.10.01.003
基金项目: 国家重点研发计划资助项目(2020YFC1807803);矿物加工科学与技术国家重点实验室开放基金资助项目(BGRIMM-KJSKL-2020-11);中央高校基本科研业务费资助项目(FRF-IP-20-02)。
详细信息
    通讯作者:

    E-mail: alabozhizi@163.com

  • 中图分类号: TD926.5

Optimization of depth clarification device for beneficiation circulating water based on solid-liquid two-phase flow simulation

More Information
  • 摘要: 部分选矿循环水中含一定量的高分散性悬浮颗粒,仅依靠简单浓缩沉降难以澄清,无法达到回用要求。针对这一难题,提出了一种选矿循环水固体悬浮物澄清装置。为优化装置的结构参数与运行参数,建立了选矿循环水深度澄清装置的二维物理模型,基于计算流体力学(CFD)的方法,选用Mixture和RNG k‒ε 模型对装置主要的结构参数与运行参数展开了数值模拟研究。研究发现适当降低水力循环区喷嘴长度,增加喉管与喷嘴管径比、颗粒沉降区开口尺寸、装置直径等结构,能够降低颗粒沉降区平均湍动能,由于湍动能为单位质量流体由于紊流脉动所具有的动能,故降低了颗粒沉降区流场的紊流程度,增加了水流的稳定性,提高了装置对悬浮颗粒的去除效果;同时发现降低入口流速、增加悬浮颗粒粒径有助于提高悬浮物的去除率,当进水流速为0.1 m·s‒1、经过混凝的悬浮颗粒形成粒径大于100 μm时,装置对选矿循环水中的悬浮颗粒去除效果显著。

     

  • 图  1  固体悬浮物处理装置结构简图

    Figure  1.  Structure diagram of deep clarification physicochemical reaction device

    图  2  物理模型(a)与网格划分(b)

    Figure  2.  Physical model (a) and meshing (b)

    图  3  网格独立性研究

    Figure  3.  Grid dependency study

    图  4  不同喷嘴长度对装置内部速度流场的影响. (a) 50 m; (b) 80 mm; (c) 110mm

    Figure  4.  Effect of nozzle length on velocity flow field inside the device: (a) 50 m; (b) 80 mm; (c) 110 mm

    图  6  喷嘴长度对固体悬浮颗粒去除率η的影响

    Figure  6.  Effect of nozzle length on the removal rate of solid suspended particles η

    图  5  喷嘴长度对颗粒沉降区平均湍动能的影响

    Figure  5.  Effect of nozzle length on average turbulent kinetic energy in sludge settling zone

    图  7  管径比对装置内部速度流场的影响. (a) 管径比1.5; (b) 管径比2; (c) 管径比3

    Figure  7.  Effect of pipe diameter ratio on velocity flow field inside the device: (a) pipe diameter ratio of 1.5; (b) pipe diameter ratio of 2; (c) pipe diameter ratio of 3

    图  8  管径比对颗粒沉降区平均湍动能的影响

    Figure  8.  Effect of pipe diameter ratio on average turbulent kinetic energy in sludge settling zone

    图  9  管径比对固体悬浮颗粒去除率的影响

    Figure  9.  Effect of pipe diameter ratio on the removal rate of solid suspended particles

    图  10  开口尺寸对装置内部速度流场的影响. (a) 开口尺寸50 mm; (b) 开口尺寸70 mm; (c) 开口尺寸90 mm

    Figure  10.  Effect of opening size on velocity flow field inside the device: (a) opening size of 50 mm; (b) opening size of 70 mm; (c) opening size of 90 mm

    图  12  开口尺寸对固体悬浮颗粒去除率的影响

    Figure  12.  Effect of opening size on removal rate of suspended solids particles

    图  11  开口尺寸对污泥沉降区平均湍动能的影响

    Figure  11.  Effect of opening size on average turbulent kinetic energy in sludge settling zone

    图  13  装置直径对装置内部速度流场的影响. (a) 直径500 mm; (b) 直径600 mm; (c) 直径700 mm

    Figure  13.  Effect of device diameter on velocity distribution of flow field inside the device: (a) diameter of 500 mm; (b) diameter of 600 mm; (c) diameter of 700 mm

    图  14  装置直径对污泥沉降区平均湍动能的影响

    Figure  14.  Effect of device diameter on average turbulent kinetic energy in sludge settling zone

    图  15  装置直径对固体悬浮颗粒去除率的影响

    Figure  15.  Effect of device diameter on the removal rate of solid suspended particles

    表  1  装置主要结构尺寸

    Table  1.   Main structure size of the device mm

    HDh1h2h3h4h5h6d1
    1220500155450440601909525
    d2d3LL1L2L3L4αβ
    503807080156050140º150º
    下载: 导出CSV

    表  2  装置运行参数对固体悬浮颗粒去除率的影响

    Table  2.   Effect of operation parameters on the removal rate of suspended solids

    Inlet velocity/(m·s−1)Suspended particle size/µmη/%
    0.16025.11
    7530.26
    10060.98
    12080.36
    0.126018.3
    7524.13
    10045.96
    12070.46
    0.156017.16
    7518.41
    10026.11
    12046.18
    0.186011.54
    7515.6
    10023.6
    12029.1
    下载: 导出CSV
  • [1] Chen W M, Wu S M, Lei Y L, et al. China's water footprint by Province, and inter-provincial transfer of virtual water. Ecol Indic, 2017, 74: 321 doi: 10.1016/j.ecolind.2016.11.037
    [2] Zhou S J, Deng R J, Hursthouse A. Risk assessment of potentially toxic elements pollution from mineral processing steps at xikuangshan antimony plant, Hunan, China. Processes, 2019, 8(1): 29 doi: 10.3390/pr8010029
    [3] Yang X L, Bu X N, Xie G Y, et al. A comparative study on the influence of mono, di, and trivalent cations on the chalcopyrite and pyrite flotation. J Mater Res Technol, 2021, 11: 1112 doi: 10.1016/j.jmrt.2021.01.086
    [4] Bicak O, Ozturk Y, Ozdemir E, et al. Modelling effects of dissolved ions in process water on flotation performance. Miner Eng, 2018, 128: 84 doi: 10.1016/j.mineng.2018.08.031
    [5] Castillo C, Ihle C F, Jeldres R I. Chemometric optimisation of a copper sulphide tailings flocculation process in the presence of clays. Minerals, 2019, 9(10): 582 doi: 10.3390/min9100582
    [6] Chen Y F, Fan R, An D F, et al. Water softening by induced crystallization in fluidized bed. J Environ Sci, 2016, 50: 109 doi: 10.1016/j.jes.2016.08.014
    [7] Zubkova O, Alexeev A, Polyanskiy A, et al. Complex processing of saponite waste from a diamond-mining enterprise. Appl Sci, 2021, 11(14): 6615 doi: 10.3390/app11146615
    [8] Liang G Q, Zhao Q, Liu B, et al. Treatment and reuse of process water with high suspended solids in low-grade iron ore dressing. J Clean Prod, 2021, 278: 123493 doi: 10.1016/j.jclepro.2020.123493
    [9] Xu S, Zhou X L, Liu X C, et al. Development process, classification and high efficiency modification status of the thickener. Met Mine, 2021(5): 167

    徐帅, 周兴龙, 刘肖楚, 等. 浓密机发展历程、分类及其高效化改进研究现状. 金属矿山, 2021(5):167
    [10] Yang B D, Xie J Y, Li P. Research on mechanism of high efficiency thickener. Nonferrous Met (Miner Process Sect), 2011(5): 38

    杨保东, 谢纪元, 李鹏. 高效浓密机机理研究. 有色金属(选矿部分), 2011(5):38
    [11] Chen Q L, Li C J, Yang Y. Analysis on technical characteristics of ϕ53 m center drive automatic rake lifting high efficiency thickener. Mod Min, 2009, 25(6): 130 doi: 10.3969/j.issn.1674-6082.2009.06.048

    陈庆来, 李从军, 杨勇. ϕ53 m中心传动自动提耙高效浓缩机技术特点分析. 现代矿业, 2009, 25(6):130 doi: 10.3969/j.issn.1674-6082.2009.06.048
    [12] Xie D D, Tong X, Xie X, et al. The application and development of thickener in mineral processing technology. Conserv Util Miner Resour, 2015(2): 73

    谢丹丹, 童雄, 谢贤, 等. 浓密机在选矿中的应用现状及研究进展. 矿产保护与利用, 2015(2):73
    [13] Xu Y R, Ban X J, Wang X K, et al. Simulations of silicone oil filling for use in retinal detachment surgery. Chin J Eng, 2021, 43(9): 1233

    徐衍睿, 班晓娟, 王笑琨, 等. 面向视网膜脱离手术的硅油填充模拟. 工程科学学报, 2021, 43(9):1233
    [14] Cui Y, Ravnik J, Steinmann P, et al. Settling characteristics of nonspherical porous sludge flocs with nonhomogeneous mass distribution. Water Res, 2019, 158: 159 doi: 10.1016/j.watres.2019.04.017
    [15] Gao H W, Stenstrom M K. Development and applications in computational fluid dynamics modeling for secondary settling tanks over the last three decades: A review. Water Environ Res, 2020, 92(6): 796 doi: 10.1002/wer.1279
    [16] Shah M T, Parmar H B, Rhyne L D, et al. A novel settling tank for produced water treatment: CFD simulations and PIV experiments. J Petroleum Sci Eng, 2019, 182: 106352 doi: 10.1016/j.petrol.2019.106352
    [17] Yao J J, Song L L, Liu C. Numerical simulation and structural optimization of water distribution channel between the flocculation tank and sedimentation tank with inclined plate settler. J Water Resour Water Eng, 2020, 31(5): 120

    姚娟娟, 宋莉莉, 刘存. 斜板沉淀池前配水渠的数值模拟及结构优化. 水资源与水工程学报, 2020, 31(5):120
    [18] Wei W L, Hu J J, Wang C Z, et al. Numerical simulation for the influence of outlet location on the hydraulic characteristic in a radical settling tank. Chin J Appl Mech, 2021, 38(2): 670

    魏文礼, 胡嘉冀, 王长洲, 等. 辐流式沉淀池出口位置优化数值模拟研究. 应用力学学报, 2021, 38(2):670
    [19] Lan B, Xu J, Liu Z C, et al. Simulation of scale-up effect of particle residence time distribution characteristics in continuously operated dense-phase fluidized beds. Ciesc J, 2021, 72(1): 521

    兰斌, 徐骥, 刘志成, 等. 连续操作密相流化床颗粒停留时间分布特性模拟放大研究. 化工学报, 2021, 72(1):521
    [20] Liu Y L, Zhang P, Wei W L, et al. Numerical simulation of mechanical property of solid-liquid two-phase turbulent flow in a secondary sedimentation tank of radial flow. J Water Resour Water Eng, 2013, 24(4): 25

    刘玉玲, 张沛, 魏文礼, 等. 辐流式沉淀池液固两相流力学特性三维数值模拟. 水资源与水工程学报, 2013, 24(4):25
    [21] Yu Q H, Mei Z Y, Bai M Q, et al. Cooling performance improvement of impingement hybrid synthetic jets in a confined space with the aid of a fluid diode. Appl Therm Eng, 2019, 157: 113749 doi: 10.1016/j.applthermaleng.2019.113749
    [22] Behrangi F, Banihashemi M A, Namin M M, et al. A new approach to solve mixture multi-phase flow model using time splitting projection method. Prog Comput Fluid Dyn Int J, 2019, 19(3): 160 doi: 10.1504/PCFD.2019.099595
    [23] Hnaien N, Marzouk S, Aissia H B, et al. Numerical investigation of velocity ratio effect in combined wall and offset jet flows. J Hydrodyn, 2018, 30(6): 1105 doi: 10.1007/s42241-018-0136-0
    [24] Siswantara A I, Budiarso, Darmawan S. Investigation of inverse-turbulent-Prandtl number with four RNG k‒ε turbulence models on compressor discharge pipe of bioenergy micro gas turbine. Appl Mech Mater, 2016, 819: 392 doi: 10.4028/www.scientific.net/AMM.819.392
    [25] Tarpagkou R, Pantokratoras A. The influence of lamellar settler in sedimentation tanks for potable water treatment—A computational fluid dynamic study. Powder Technol, 2014, 268: 139 doi: 10.1016/j.powtec.2014.08.030
    [26] Tan L X, Tang M, Xu C H. Three-dimensional numerical simulations of the effects of slanting plates in vertical flow desilting tank. J Hydroelectr Eng, 2018, 37(10): 86 doi: 10.11660/slfdxb.20181010

    谭立新, 唐敏, 徐长贺. 斜板对竖流式沉淀池影响的三维数值模拟. 水力发电学报, 2018, 37(10):86 doi: 10.11660/slfdxb.20181010
    [27] Shahrokhi M, Rostami F, Md Said M A, et al. The effect of number of baffles on the improvement efficiency of primary sedimentation tanks. Appl Math Model, 2012, 36(8): 3725 doi: 10.1016/j.apm.2011.11.001
    [28] Goula A M, Kostoglou M, Karapantsios T D, et al. A CFD methodology for the design of sedimentation tanks in potable water treatment: Case study: The influence of a feed flow control baffle. Chem Eng J, 2008, 140(1-3): 110 doi: 10.1016/j.cej.2007.09.022
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  36
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-01
  • 网络出版日期:  2022-01-20

目录

    /

    返回文章
    返回