• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

废均相催化剂氧化‒络合浸出铑工艺及其动力学

丁云集 李佳怡 郑环东 崔言杰 刘波 张深根

丁云集, 李佳怡, 郑环东, 崔言杰, 刘波, 张深根. 废均相催化剂氧化‒络合浸出铑工艺及其动力学[J]. 工程科学学报, 2023, 45(2): 214-222. doi: 10.13374/j.issn2095-9389.2021.10.20.005
引用本文: 丁云集, 李佳怡, 郑环东, 崔言杰, 刘波, 张深根. 废均相催化剂氧化‒络合浸出铑工艺及其动力学[J]. 工程科学学报, 2023, 45(2): 214-222. doi: 10.13374/j.issn2095-9389.2021.10.20.005
DING Yun-ji, LI Jia-yi, ZHENG Huan-dong, CUI Yan-jie, LIU Bo, ZHANG Shen-gen. Oxidation–complexation leaching and kinetic study of rhodium from spent homogeneous catalysts[J]. Chinese Journal of Engineering, 2023, 45(2): 214-222. doi: 10.13374/j.issn2095-9389.2021.10.20.005
Citation: DING Yun-ji, LI Jia-yi, ZHENG Huan-dong, CUI Yan-jie, LIU Bo, ZHANG Shen-gen. Oxidation–complexation leaching and kinetic study of rhodium from spent homogeneous catalysts[J]. Chinese Journal of Engineering, 2023, 45(2): 214-222. doi: 10.13374/j.issn2095-9389.2021.10.20.005

废均相催化剂氧化‒络合浸出铑工艺及其动力学

doi: 10.13374/j.issn2095-9389.2021.10.20.005
基金项目: 国家重点研发专项资助项目(2021YFC1910504,2019YFC1907101);国家自然科学基金资助项目(U2002212,52204412);广东省基础与应用基础研究基金资助项目(2020A1515110408);佛山市人民政府科技创新专项资金资助项目(BK21BE002);中央高校基本科研业务费资助项目(FRF-TP-20-031A1)
详细信息
    通讯作者:

    E-mail: zhangshengen@mater.ustb.edu.cn

  • 中图分类号: TF837

Oxidation–complexation leaching and kinetic study of rhodium from spent homogeneous catalysts

More Information
  • 摘要: 基于Rh在废均相催化剂中的赋存状态,研发出绿色解离Rh–P化学键及Rh的络合浸出新技术,实现了Rh的绿色高效浸出,杜绝了传统废均相催化剂焚烧–碎化–酸浸工艺流程长、污染严重、回收率低等问题。首先通过蒸馏将低熔点有机物去除,然后采用H2O2将均相铑膦络合物中的Rh+氧化成Rh3+,减少有机配体对Rh的束缚;同时Rh3+与Cl络合形成水溶性的RhCl63–进入溶液中。研究了蒸馏温度、Cl浓度、H2O2用量、H+浓度、反应时间等对Rh的回收率影响,并采用响应曲面法优化了Cl浓度、H2O2用量和反应时间等工艺参数。结果表明:各参数对Rh回收率的影响大小为:H2O2用量>Cl浓度>反应时间,优化的工艺参数为:蒸馏温度260 ℃、Cl浓度3.0 mol∙L–1、H2O2用量为废均相催化剂的37%(体积分数)、H+浓度1.0 mol∙L–1、反应时间4.5 h,Rh的回收率达到98.22%。最后,采用分光光度法研究了Rh的氧化–络合动力学行为,表明该反应的活化能为39.24 kJ∙mol–1,属于化学反应控速。

     

  • 图  1  废铑均相催化剂的回收工艺流程图

    Figure  1.  Schematic of the recovery process of spent Rh homogeneous catalysts

    图  2  蒸馏过程示意图

    Figure  2.  Diagram of the distillation process

    图  3  红外分析光谱.(a)废均相催化剂;(b)蒸馏产物

    Figure  3.  Infrared absorption spectrum recorded: (a) spent RCHC; (b) distillate

    图  4  240~320 ℃下蒸馏产物的体积及Rh浓度

    Figure  4.  Volume of distillate and concentration of Rh at temperatures ranging from 240–320 ℃

    图  5  氯离子浓度(a)、双氧水用量(b)、反应时间(c)、H+浓度(d)对Rh浸出率的影响

    Figure  5.  Effects of Cl concentration (a), H2O2 dosage (b), leaching time (c), and H+ concentration (d) on Rh leaching efficiency

    图  6  不同因素相互作用对Rh浸出率影响的三维响应图. (a) C, time=4 h; (b) B, c(Cl) = 5 mol∙L–1; (c) A, H2O2用量为30%

    Figure  6.  Response surface plots for the interaction effects on the Rh leaching rate: (a) C, time = 4 h; (b) (b) B, c(Cl) = 5 mol∙L–1; (c) A, H2O2 dosage of 30%

    图  7  废均相催化剂氧化浸出Rh的反应示意图

    Figure  7.  Diagram of oxidation leaching of Rh using spent homogeneous catalysts

    图  8  不同浓度的RhCl63–溶液的紫外吸收光谱

    Figure  8.  Ultraviolet absorption spectra of RhCl63− solution at different concentrations

    图  9  ln(AAt)与反应时间的关系

    Figure  9.  Relationship between ln(AAt) and reaction time

    图  10  40~90 ℃反应条件下Rh氧化浸出的Arrhenius图

    Figure  10.  Arrhenius plot for oxidation leaching of Rh at temperatures of 40–90 ℃

    表  1  Rh氧化浸出回归方程的方差分析

    Table  1.   ANOVA results of the reduced quadratic model for the Rh leaching efficiency

    SourceSum of squaresMean squareF valuep-value Prob>F
    Model10550.871172.3212.380.0003
    A3690.053690.0538.97< 0.0001
    B2460.032460.0325.980.0005
    C341.94341.943.610.0866
    AB5.415.410.0570.8159
    AC484.85484.855.120.0471
    BC307.27307.273.250.1018
    A22254.832254.8323.820.0006
    B2410.16410.164.330.0641
    C21121.331121.3311.840.0063
    Residual946.8094.68
    Lack of fit941.00188.20162.32< 0.0001
    Pure error5.801.16
    Cor total11497.66
    下载: 导出CSV

    表  2  响应曲面模型的相关性分析

    Table  2.   Correlation analysis of response surface method

    CategoryValueCategoryValue
    Standard deviation9.73R20.9177
    Mean63.47Radj20.8435
    Coefficient of fariance15.33Pred R20.3791
    PRESS7139.13Adeq precision10.702
    下载: 导出CSV

    表  3  不同温度下Rh氧化络合浸出动力学参数

    Table  3.   Kinetic parameters of the chemical reaction control model for Rh leaching at different temperatures

    T/kR2
    450.001460.9818
    600.00140.9864
    750.004670.9821
    900.007620.9663
    下载: 导出CSV
  • [1] Hülsey M J, Zhang B, Ma Z, et al. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat Commun, 2019, 10: 1330 doi: 10.1038/s41467-019-09188-9
    [2] Yuan Q, Song X, Feng S, et al. An efficient and ultrastable single-Rh-site catalyst on a porous organic polymer for heterogeneous hydrocarboxylation of olefins. Chem Commun (Camb), 2021, 57(4): 472 doi: 10.1039/D0CC06863B
    [3] Ding Y J, Zhang S G. Status and research progress on recovery of platinum group metals from spent catalysts. Chin J Eng, 2020, 42(3): 257

    丁云集, 张深根. 废催化剂中铂族金属回收现状与研究进展. 工程科学学报, 2020, 42(3):257
    [4] Ding Y J, Zheng H D, Zhang S G, et al. Highly efficient recovery of platinum, palladium, and rhodium from spent automotive catalysts via iron melting collection. Resour Conserv Recycl, 2020, 155: 104644 doi: 10.1016/j.resconrec.2019.104644
    [5] Ding Y J, Zhang X Y, Wu B Y, et al. Highly porous ceramics production using slags from smelting of spent automotive catalysts. Resour Conserv Recycl, 2021, 166: 105373 doi: 10.1016/j.resconrec.2020.105373
    [6] Hermans I. Methane upgraded by rhodium. Nature, 2017, 551(7682): 575 doi: 10.1038/d41586-017-07437-9
    [7] Shan J J, Li M W, Allard L F, et al. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature, 2017, 551(7682): 605 doi: 10.1038/nature24640
    [8] Yang L J, Wang H, Rempel G L, et al. Recovery of wilkinson's catalyst from hydrogenated nitrile butadiene rubber latex nanoparticles. Top Catal, 2014, 57(17-20): 1558 doi: 10.1007/s11244-014-0333-1
    [9] Murphy S K, Park J W, Cruz F A, et al. Rh-catalyzed C–C bond cleavage by transfer hydroformylation. Science, 2015, 347(6217): 56 doi: 10.1126/science.1261232
    [10] Campos C H, Belmar J B, Jeria S E, et al. Rhodium(I) diphenylphosphine complexes supported on porous organic polymers as efficient and recyclable catalysts for alkene hydrogenation. RSC Adv, 2017, 7(6): 3398 doi: 10.1039/C6RA26104C
    [11] Peng Q R, Deng C X, Yang Y, et al. Recycle and recovery of rhodium complexes with water-soluble and amphiphilic phosphines in ionic liquids for hydroformylation of 1-hexene. React Kinetics Catal Lett, 2007, 90(1): 53 doi: 10.1007/s11144-007-4975-x
    [12] Pan Z F, Liu W P, Chen J L, et al. Research and application of platinum metal homogeneous catalysts. Precious Met, 2009, 30(3): 42

    潘再富, 刘伟平, 陈家林, 等. 铂族金属均相催化剂的研究和应用. 贵金属, 2009, 30(3):42
    [13] Li Q. Recovery of Rhodium from Low Concentration Rhodium-Containing Organic Waste Liquid [Dissertation]. Kunming: Kunming Institute of Precious Metals, 2017

    李强. 从低浓度含铑有机废液中回收铑的研究[学位论文]. 昆明: 昆明贵金属研究所, 2017
    [14] Jiang L Y, Yu H B, Li C, et al. Study on rhodium recovery process by roasting rhodium containing waste catalyst from butyl octanol unit. Inorg Chem Ind, 2015, 47(4): 51

    蒋凌云, 于海斌, 李晨, 等. 丁辛醇废铑催化剂焙烧铑回收工艺研究. 无机盐工业, 2015, 47(4):51
    [15] Du J S. Recovery of rhodium from rhodium containing waste homogeneous catalyst by aluminium crushing. China Chemical Trade, 2017, 9(18): 130

    杜继山. 铝碎法回收铑均相催化剂废液中的铑. 中国化工贸易, 2017, 9(18):130
    [16] Dong H G, Zhao J C, Chen J L, et al. Recovery of platinum group metals from spent catalysts: A review. Int J Miner Process, 2015, 145: 108 doi: 10.1016/j.minpro.2015.06.009
    [17] Yang L J, Pan Q M, Rempel G L. Development of a green separation technique for recovery of Wilkinson's catalysts from bulk hydrogenated nitrile butadiene rubber. Catal Today, 2013, 207: 153 doi: 10.1016/j.cattod.2012.02.024
    [18] Jiang L Y, Li C, Li J X, et al. Study on preparing high-purity rhodium chloride by using digestion solution produced in dispelling waste catalyst containing rhodium from butyl octanol unit. Inorg Chem Ind, 2017, 49(11): 76

    蒋凌云, 李晨, 李继霞, 等. 丁辛醇废铑催化剂消解液制备高纯三氯化铑研究. 无机盐工业, 2017, 49(11):76
    [19] Davidson W C, Fieselmann B F. Recovery of Rhodium from Carbonylation Residues: USA Patent, US4341741. 1982-07-27
    [20] Wu Y Y, Zhou S Q, Qin F H, et al. Removal of humic acids by oxidation and coagulation during Fenton treatment. Environ Sci, 2010, 31(4): 996

    吴彦瑜, 周少奇, 覃芳慧, 等. Fenton法氧化/混凝作用去除腐殖酸的研究. 环境科学, 2010, 31(4):996
    [21] Dutta K, Mukhopadhyay S, Bhattacharjee S, et al. Chemical oxidation of methylene blue using a Fenton-like reaction. J Hazard Mater, 2001, 84(1): 57 doi: 10.1016/S0304-3894(01)00202-3
    [22] Wang Y L, Xiao L, Fu G Y, et al. Arsenic removal from pyrite cinders in Na2S-NaOH solution with parameters optimized using the response surface methodology. Chin J Eng, 2018, 40(9): 1036

    王永良, 肖力, 付国燕, 等. 响应曲面法优化Na2S-NaOH体系浸出硫酸烧渣中的砷. 工程科学学报, 2018, 40(9):1036
    [23] Bao J W, Liu Z G, Chu M S, et al. Multi-objective collaborative optimization of metallurgical properties of iron carbon agglomerates using response surface methodology. Int J Miner Metall Mater, 2021, 28(12): 1917 doi: 10.1007/s12613-020-2188-8
    [24] Ding Y J, Zheng H D, Li J Y, et al. Recovery of platinum from spent petroleum catalysts: Optimization using response surface methodology. Metals, 2019, 9(3): 354 doi: 10.3390/met9030354
    [25] Tan B, Wang L J, Yan B J, et al. Kinetics of chlorination of vanadium slag by microwave heating. Chin J Eng, 2020, 42(9): 1157

    谭博, 王丽君, 闫柏军, 等. 微波场下的钒渣氯化动力学. 工程科学学报, 2020, 42(9):1157
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  32
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-21
  • 网络出版日期:  2022-10-18
  • 刊出日期:  2023-02-20

目录

    /

    返回文章
    返回