Oxidation–complexation leaching and kinetic study of rhodium from spent homogeneous catalysts
-
摘要: 基于Rh在废均相催化剂中的赋存状态,研发出绿色解离Rh–P化学键及Rh的络合浸出新技术,实现了Rh的绿色高效浸出,杜绝了传统废均相催化剂焚烧–碎化–酸浸工艺流程长、污染严重、回收率低等问题。首先通过蒸馏将低熔点有机物去除,然后采用H2O2将均相铑膦络合物中的Rh+氧化成Rh3+,减少有机配体对Rh的束缚;同时Rh3+与Cl–络合形成水溶性的RhCl63–进入溶液中。研究了蒸馏温度、Cl–浓度、H2O2用量、H+浓度、反应时间等对Rh的回收率影响,并采用响应曲面法优化了Cl–浓度、H2O2用量和反应时间等工艺参数。结果表明:各参数对Rh回收率的影响大小为:H2O2用量>Cl–浓度>反应时间,优化的工艺参数为:蒸馏温度260 ℃、Cl–浓度3.0 mol∙L–1、H2O2用量为废均相催化剂的37%(体积分数)、H+浓度1.0 mol∙L–1、反应时间4.5 h,Rh的回收率达到98.22%。最后,采用分光光度法研究了Rh的氧化–络合动力学行为,表明该反应的活化能为39.24 kJ∙mol–1,属于化学反应控速。Abstract: Rhodium-containing homogeneous catalysts are the most active catalysts for homogeneous hydrogenation. Spent homogeneous catalysts contain 100–2000 g∙t–1 of rhodium (Rh) and plenty of hazardous organic components, making them an essential resource of Rh. The recovery of Rh from homogeneous catalysts has excellent economic and environmental benefits. Based on Rh in the spent homogeneous catalysts, a new technology for green dissociation of the Rh–P chemical bond and complexation leaching of Rh was developed, allowing the green and efficient recovery of Rh. Compared with traditional incineration-fragmentation and acid leaching methods, the proposed technology eliminated issues such as long process times, severe environmental pollution, and a low recovery rate of Rh. In this study, first, the low-melting-point organics were removed using distillation. Then, the Rh+ in the homogeneous rhodium–phosphine complex was oxidized as Rh3+ through H2O2, which reduced the binding of organic ligands to Rh. Meanwhile, the RhCl63− formed by Rh3+ and Cl– dissolved into the aqueous solution. The effects of distillation temperature, the concentration of Cl–, the dosage of H2O2, the concentration of H+, and reaction time on the recovery efficiency of Rh were studied. The parameters listed above were optimized using response surface methodology. The results showed that the influence of each parameter on the recovery efficiency of Rh was as follows: H2O2 dosage > Cl– concentration > reaction time. The recovery efficiency of Rh reached 98.22% after 4 h of distillation at 260 °C, leaching Rh in the mixture solution of 3.0 mol∙L–1 Cl–, 37% (volume fraction) of the spent homogeneous catalyst dosage of H2O2, 1.0 mol∙L–1 H+, and at 90 °C for 4.5 h. Finally, the oxidation–complexation kinetic behavior of Rh was studied using spectrophotometry. The activation energy of the leaching reaction was 39.24 kJ∙mol–1, indicating that the rate-controlling step of this process was a surface chemical reaction.
-
Key words:
- rhodium /
- spent homogeneous catalysts /
- distillation /
- response surface method /
- kinetics
-
表 1 Rh氧化浸出回归方程的方差分析
Table 1. ANOVA results of the reduced quadratic model for the Rh leaching efficiency
Source Sum of squares Mean square F value p-value Prob>F Model 10550.87 1172.32 12.38 0.0003 A 3690.05 3690.05 38.97 < 0.0001 B 2460.03 2460.03 25.98 0.0005 C 341.94 341.94 3.61 0.0866 AB 5.41 5.41 0.057 0.8159 AC 484.85 484.85 5.12 0.0471 BC 307.27 307.27 3.25 0.1018 A2 2254.83 2254.83 23.82 0.0006 B2 410.16 410.16 4.33 0.0641 C2 1121.33 1121.33 11.84 0.0063 Residual 946.80 94.68 — — Lack of fit 941.00 188.20 162.32 < 0.0001 Pure error 5.80 1.16 — — Cor total 11497.66 — — — 表 2 响应曲面模型的相关性分析
Table 2. Correlation analysis of response surface method
Category Value Category Value Standard deviation 9.73 R2 0.9177 Mean 63.47 Radj2 0.8435 Coefficient of fariance 15.33 Pred R2 0.3791 PRESS 7139.13 Adeq precision 10.702 表 3 不同温度下Rh氧化络合浸出动力学参数
Table 3. Kinetic parameters of the chemical reaction control model for Rh leaching at different temperatures
T/℃ k R2 45 0.00146 0.9818 60 0.0014 0.9864 75 0.00467 0.9821 90 0.00762 0.9663 -
参考文献
[1] Hülsey M J, Zhang B, Ma Z, et al. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat Commun, 2019, 10: 1330 doi: 10.1038/s41467-019-09188-9 [2] Yuan Q, Song X, Feng S, et al. An efficient and ultrastable single-Rh-site catalyst on a porous organic polymer for heterogeneous hydrocarboxylation of olefins. Chem Commun (Camb) , 2021, 57(4): 472 doi: 10.1039/D0CC06863B [3] Ding Y J, Zhang S G. Status and research progress on recovery of platinum group metals from spent catalysts. Chin J Eng, 2020, 42(3): 257丁云集, 张深根. 废催化剂中铂族金属回收现状与研究进展. 工程科学学报, 2020, 42(3):257 [4] Ding Y J, Zheng H D, Zhang S G, et al. Highly efficient recovery of platinum, palladium, and rhodium from spent automotive catalysts via iron melting collection. Resour Conserv Recycl, 2020, 155: 104644 doi: 10.1016/j.resconrec.2019.104644 [5] Ding Y J, Zhang X Y, Wu B Y, et al. Highly porous ceramics production using slags from smelting of spent automotive catalysts. Resour Conserv Recycl, 2021, 166: 105373 doi: 10.1016/j.resconrec.2020.105373 [6] Hermans I. Methane upgraded by rhodium. Nature, 2017, 551(7682): 575 doi: 10.1038/d41586-017-07437-9 [7] Shan J J, Li M W, Allard L F, et al. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature, 2017, 551(7682): 605 doi: 10.1038/nature24640 [8] Yang L J, Wang H, Rempel G L, et al. Recovery of wilkinson's catalyst from hydrogenated nitrile butadiene rubber latex nanoparticles. Top Catal, 2014, 57(17-20): 1558 doi: 10.1007/s11244-014-0333-1 [9] Murphy S K, Park J W, Cruz F A, et al. Rh-catalyzed C–C bond cleavage by transfer hydroformylation. Science, 2015, 347(6217): 56 doi: 10.1126/science.1261232 [10] Campos C H, Belmar J B, Jeria S E, et al. Rhodium(I) diphenylphosphine complexes supported on porous organic polymers as efficient and recyclable catalysts for alkene hydrogenation. RSC Adv, 2017, 7(6): 3398 doi: 10.1039/C6RA26104C [11] Peng Q R, Deng C X, Yang Y, et al. Recycle and recovery of rhodium complexes with water-soluble and amphiphilic phosphines in ionic liquids for hydroformylation of 1-hexene. React Kinetics Catal Lett, 2007, 90(1): 53 doi: 10.1007/s11144-007-4975-x [12] Pan Z F, Liu W P, Chen J L, et al. Research and application of platinum metal homogeneous catalysts. Precious Met, 2009, 30(3): 42潘再富, 刘伟平, 陈家林, 等. 铂族金属均相催化剂的研究和应用. 贵金属, 2009, 30(3):42 [13] Li Q. Recovery of Rhodium from Low Concentration Rhodium-Containing Organic Waste Liquid [Dissertation]. Kunming: Kunming Institute of Precious Metals, 2017李强. 从低浓度含铑有机废液中回收铑的研究[学位论文]. 昆明: 昆明贵金属研究所, 2017 [14] Jiang L Y, Yu H B, Li C, et al. Study on rhodium recovery process by roasting rhodium containing waste catalyst from butyl octanol unit. Inorg Chem Ind, 2015, 47(4): 51蒋凌云, 于海斌, 李晨, 等. 丁辛醇废铑催化剂焙烧铑回收工艺研究. 无机盐工业, 2015, 47(4):51 [15] Du J S. Recovery of rhodium from rhodium containing waste homogeneous catalyst by aluminium crushing. China Chemical Trade, 2017, 9(18): 130杜继山. 铝碎法回收铑均相催化剂废液中的铑. 中国化工贸易, 2017, 9(18):130 [16] Dong H G, Zhao J C, Chen J L, et al. Recovery of platinum group metals from spent catalysts: A review. Int J Miner Process, 2015, 145: 108 doi: 10.1016/j.minpro.2015.06.009 [17] Yang L J, Pan Q M, Rempel G L. Development of a green separation technique for recovery of Wilkinson's catalysts from bulk hydrogenated nitrile butadiene rubber. Catal Today, 2013, 207: 153 doi: 10.1016/j.cattod.2012.02.024 [18] Jiang L Y, Li C, Li J X, et al. Study on preparing high-purity rhodium chloride by using digestion solution produced in dispelling waste catalyst containing rhodium from butyl octanol unit. Inorg Chem Ind, 2017, 49(11): 76蒋凌云, 李晨, 李继霞, 等. 丁辛醇废铑催化剂消解液制备高纯三氯化铑研究. 无机盐工业, 2017, 49(11):76 [19] Davidson W C, Fieselmann B F. Recovery of Rhodium from Carbonylation Residues: USA Patent, US4341741. 1982-07-27 [20] Wu Y Y, Zhou S Q, Qin F H, et al. Removal of humic acids by oxidation and coagulation during Fenton treatment. Environ Sci, 2010, 31(4): 996吴彦瑜, 周少奇, 覃芳慧, 等. Fenton法氧化/混凝作用去除腐殖酸的研究. 环境科学, 2010, 31(4):996 [21] Dutta K, Mukhopadhyay S, Bhattacharjee S, et al. Chemical oxidation of methylene blue using a Fenton-like reaction. J Hazard Mater, 2001, 84(1): 57 doi: 10.1016/S0304-3894(01)00202-3 [22] Wang Y L, Xiao L, Fu G Y, et al. Arsenic removal from pyrite cinders in Na2S-NaOH solution with parameters optimized using the response surface methodology. Chin J Eng, 2018, 40(9): 1036王永良, 肖力, 付国燕, 等. 响应曲面法优化Na2S-NaOH体系浸出硫酸烧渣中的砷. 工程科学学报, 2018, 40(9):1036 [23] Bao J W, Liu Z G, Chu M S, et al. Multi-objective collaborative optimization of metallurgical properties of iron carbon agglomerates using response surface methodology. Int J Miner Metall Mater, 2021, 28(12): 1917 doi: 10.1007/s12613-020-2188-8 [24] Ding Y J, Zheng H D, Li J Y, et al. Recovery of platinum from spent petroleum catalysts: Optimization using response surface methodology. Metals, 2019, 9(3): 354 doi: 10.3390/met9030354 [25] Tan B, Wang L J, Yan B J, et al. Kinetics of chlorination of vanadium slag by microwave heating. Chin J Eng, 2020, 42(9): 1157谭博, 王丽君, 闫柏军, 等. 微波场下的钒渣氯化动力学. 工程科学学报, 2020, 42(9):1157 -