• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于树突神经网络的低轨卫星智能感知路由算法

刘洋 王丽娜

刘洋, 王丽娜. 基于树突神经网络的低轨卫星智能感知路由算法[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.11.08.007
引用本文: 刘洋, 王丽娜. 基于树突神经网络的低轨卫星智能感知路由算法[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.11.08.007
LIU Yang, WANG Li-na. LEO satellite intelligent-sensing routing algorithm based on a dendrite network[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.11.08.007
Citation: LIU Yang, WANG Li-na. LEO satellite intelligent-sensing routing algorithm based on a dendrite network[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.11.08.007

基于树突神经网络的低轨卫星智能感知路由算法

doi: 10.13374/j.issn2095-9389.2021.11.08.007
基金项目: 国家自然科学基金资助项目(61701020);北京科技大学顺德研究生院科技创新专项资金资助项目(BK19BF009)
详细信息
    通讯作者:

    E-mail: wln_ustb@126.com

  • 中图分类号: TN915

LEO satellite intelligent-sensing routing algorithm based on a dendrite network

More Information
  • 摘要: 在低轨卫星网络中,卫星运行速度快、运行周期较短,星间链路动态变化。为了及时感知星间链路状态并选择正确的路由,提出一种基于树突神经网络的低轨卫星智能感知路由算法,通过卫星之间的可视性约束分析星间建链情况,实现星间链路态势感知;通过实时构造训练集,利用树突神经网络自动调整全局卫星网络链路的权值,进而优化传统迪杰斯特拉(Dijkstra)算法,实现星间链路质量感知,给出智能路由决策;通过周期性监测卫星网络拓扑,实时修正初始路由路径。仿真结果表明,基于树突神经网络的路由算法复杂度低,路径时延、时延抖动及丢包率均低于传统启发式路由算法和Dijkstra路由算法。

     

  • 图  1  STK中构建的星座图

    Figure  1.  Constellation diagram constructed in STK

    图  2  星下点轨迹图

    Figure  2.  Under-satellite point trajectory diagram

    图  3  算法流程图

    Figure  3.  Algorithm flowchart

    图  4  某时刻卫星相对位置示意图

    Figure  4.  Image of the relative position of the satellite at a certain moment

    图  5  DD算法模型

    Figure  5.  DD algorithm model

    图  6  树突神经网络拟合图

    Figure  6.  Dendritic network fitting graph

    图  7  选择下一跳卫星节点的概率

    Figure  7.  Probability of selecting the next hop satellite node

    图  8  相同源节点至目节点的路由跳数对比

    Figure  8.  Comparison of route hops

    图  9  端到端平均时延对比

    Figure  9.  End-to-end average delay comparison

    图  11  端到端平均时延抖动对比

    Figure  11.  End-to-end average delay jitter comparison

    图  10  端到端平均丢包率对比

    Figure  10.  End-to-end average packet loss rate comparison

    表  1  Walker参数设置

    Table  1.   Parameter setting of the Walker constellation

    TypeNumber of sats
    per plane
    Number of planesInterplane spacingRAAN
    spread
    Delta881360°
    下载: 导出CSV

    表  2  链路参数设置

    Table  2.   Parameter setting of the link

    ${\rm{Dela}}{{\rm{y}}_{{\rm{max}}} }$/ ms${\rm{Los}}{{\rm{s}}_{{\rm{max}}} }$${\rm{Jitte}}{{\rm{r}}_{{\rm{max}}} }$
    1000.0005${\text{3} }{\text{.6} } \times {\text{1} }{ {\text{0} }^{ {{ - 4} } } }$
    下载: 导出CSV
  • [1] Peng J, Sun M Y, Teng X Q. 6G vision and application scenario outlook. China Ind Inf Technol, 2020(9): 18 doi: 10.3969/j.issn.1674-9138.2020.09.003

    彭健, 孙美玉, 滕学强. 6G愿景及应用场景展望. 中国工业和信息化, 2020(9):18 doi: 10.3969/j.issn.1674-9138.2020.09.003
    [2] Wu S G, Wang H Y, Wang Y, et al. Research and analysis of low-orbit satellite network routing technology. Satellites Networks, 2021(9): 66

    吴署光, 王宏艳, 王宇, 等. 低轨卫星网络路由技术研究分析. 卫星与网络, 2021(9):66
    [3] Shao F W. Research on the Link Route Technology of the Inter-satellite Link Network of the Satellite Navigation System [Dissertation]. Beijing: University of Chinese Academy of Sciences, 2017

    邵丰伟. 卫星导航系统星间链路网络建链路由技术研究[学位论文]. 北京: 中国科学院大学, 2017
    [4] Huang J H. Research on Optimal Design Technology of Inter-Satellite Link Networks in Global Navigation Satellite Systems [Dissertation]. Changsha: National University of Defense Technology, 2018

    黄今辉. 卫星导航系统星间链路网络优化设计技术研究[学位论文]. 长沙: 国防科技大学, 2018
    [5] Hao L C, Ren P Y, Du Q H. Satellite QoS routing algorithm based on energy aware and load balancing // International Conference on Wireless Communications and Signal Processing. Nanjing, 2020: 685
    [6] Gao H, Wang L, Huang W D, et al. Routing optimization method for fast return of data on overseas satellites in Beidou Global Navigation Satellite System. Chin Space Sci Technol, 2018, 38(2): 9 doi: 10.16708/j.cnki.1000-758x.2018.0002

    高贺, 王玲, 黄文德, 等. 北斗全球卫星导航系统境外星数据快速回传的路由优化方法. 中国空间科学技术, 2018, 38(2):9 doi: 10.16708/j.cnki.1000-758x.2018.0002
    [7] Liao G Y. Research on Routing Algorithm of Low-orbit Satellite Network Based on Inter-Satellite Link [Dissertation]. Chongqing: Chongqing University of Posts and Telecommunications, 2020

    廖光燕. 基于星间链路的低轨卫星网络路由算法研究[学位论文]. 重庆: 重庆邮电大学, 2020
    [8] Li X T, Zhang Y S. Artificial intelligence routing method suitable for SDN network suitable for LEO satellites. Electron Meas Technol, 2020, 43(22): 109 doi: 10.19651/j.cnki.emt.2005049

    李新桐, 张亚生. 一种适用于低轨卫星的SDN网络人工智能路由方法. 电子测量技术, 2020, 43(22):109 doi: 10.19651/j.cnki.emt.2005049
    [9] Liu H Y, Sun F C, Li H B, et al. A satellite network QoS routing scheme based on machine learning. J Central South Univ Sci Technol, 2013, 44 (Suppl 2): 263

    刘贺语, 孙富春, 李洪波, 等. 一种基于机器学习的卫星网络QoS路由机制. 中南大学学报(自然科学版), 2013, 44 (增刊2): 263
    [10] Wang X T, Dai Z Q, Xu Z. LEO satellite network routing algorithm based on reinforcement learning // 2021 IEEE 4th International Conference on Electronics Technology. Chengdu, 2021: 1105
    [11] Tu Z, Zhou H C, Li K, et al. A routing optimization method for software-defined SGIN based on deep reinforcement learning // 2019 IEEE Globecom Workshops. Waikoloa, 2019: 1
    [12] Yang Y, Lv G H, Zhao H, et al. Survey on deep learning applicatons in software defined networking research. J Softw, 2020, 31(7): 2184 doi: 10.13328/j.cnki.jos.006039

    杨洋, 吕光宏, 赵会, 等. 深度学习在软件定义网络研究中的应用综述. 软件学报, 2020, 31(7):2184 doi: 10.13328/j.cnki.jos.006039
    [13] Gao H S, Tang X, Cao W B. Loop-free routing algorithm based on deep neural network. Radio Eng, 2022, 52(1): 101 doi: 10.3969/j.issn.1003-3106.2022.01.015

    高会生, 唐骁, 曹旺斌. 基于深度神经网络的无环路由算法. 无线电工程, 2022, 52(1):101 doi: 10.3969/j.issn.1003-3106.2022.01.015
    [14] Wu Y S. Deep reinforcement learning routing for dynamic topology networks. Telecommun Eng, 2021, 61(6): 659

    伍元胜. 面向动态拓扑网络的深度强化学习路由技术. 电讯技术, 2021, 61(6):659
    [15] Zhang L, Yan F, Zhang Y Y, et al. A routing algorithm based on link state information for LEO satellite networks // 2020 IEEE Globecom Workshops. Taipei, 2020: 1
    [16] Liu X, Xie J S, Chen S W. Link quality aware routing scheme in LEO satellite network. Astronaut Syst Eng Technol, 2020, 4(2): 33

    刘洵, 谢金森, 陈双武. 链路状态感知的低轨卫星网络路由机制. 宇航总体技术, 2020, 4(2):33
    [17] Chen Y, Zhao L F, Liu H J, et al. Analysis of configuration and maintenance strategy of LEO walker constellation. J Astronaut, 2019, 40(11): 1296 doi: 10.3873/j.issn.1000-1328.2019.11.005

    陈雨, 赵灵峰, 刘会杰, 等. 低轨Walker星座构型演化及维持策略分析. 宇航学报, 2019, 40(11):1296 doi: 10.3873/j.issn.1000-1328.2019.11.005
    [18] Wang W D, Wang C, Wang H W, et al. Dynamic cache allocation routing strategy of Internet of Things satellite node based on traffic prediction. J Commun, 2020, 41(2): 25 doi: 10.11959/j.issn.1000-436x.2020038

    王卫东, 王程, 王慧文, 等. 基于流量预测的物联网卫星节点动态缓存分配路由策略. 通信学报, 2020, 41(2):25 doi: 10.11959/j.issn.1000-436x.2020038
    [19] Zhang L, Yan F, Zhang Y Y, et al. LEO satellite routing algorithm based on inter-satellite link state information. Aerosp Shanghai Chin Engl, 2021, 38(4): 92

    张路, 燕锋, 章跃跃, 等. 基于星间链路状态的低轨卫星网络路由算法. 上海航天(中英文), 2021, 38(4):92
    [20] Li W, Sun L, Wang J Q, et al. Key technologies to enable 5G and TSN coordination for industrial automation. Chin J Eng, 2022, 44(6): 1044

    李卫, 孙雷, 王健全, 等. 面向工业自动化的5G与TSN协同关键技术. 工程科学学报, 2022, 44(6):1044
    [21] Luo Z Y. Research of Routing Technology Based on Machine Learning in Integrated Satellite-Terrestrial Information Network [Dissertation]. Chengdu: University of Electronic Science and Technology of China, 2021

    罗泽耀. 天地一体化网络下基于机器学习的路由技术研究[学位论文]. 成都: 电子科技大学, 2021
    [22] Yin F J, Chu Q S. Research on QoS routing based on improved ant colony algorithm. J Liaoning Univ Nat Sci Ed, 2020, 47(4): 312 doi: 10.16197/j.cnki.lnunse.2020.04.005

    尹凤杰, 褚群森. 基于改进蚁群算法的QoS路由研究. 辽宁大学学报(自然科学版), 2020, 47(4):312 doi: 10.16197/j.cnki.lnunse.2020.04.005
    [23] Zhao J R, Liu J, Zhang R, et al. Optimization of QoS routing on LEO satellite network based on ant colony algorithm. Radio Commun Technol, 2021, 47(5): 590 doi: 10.3969/j.issn.1003-3114.2021.05.011

    赵晶蕊, 刘江, 张然, 等. 基于蚁群算法的LEO卫星网络QoS优化路由. 无线电通信技术, 2021, 47(5):590 doi: 10.3969/j.issn.1003-3114.2021.05.011
    [24] Liu G, Wang J. Dendrite net: A white-box module for classification, regression, and system identification. IEEE Trans Cybern,https://doi.org/10.1109/TCYB.2021.3124328
    [25] Liu G. It may be time to improve the neuron of artificial neural network [J/OL]. TechRxiv preprint (2021-7-21) [2021-11-08].https://doi.org/10.36227/techrxiv.12477266
    [26] Liu G, Wang J. A relation spectrum inheriting Taylor series: Muscle synergy and coupling for hand. Front Inform Technol Electron Eng, 2022, 23(1): 145 doi: 10.1631/FITEE.2000578
    [27] Valadarsky A, Schapira M, Shahaf D, et al. Learning to route // Proceedings of the 16th ACM Workshop on Hot Topics in Networks. Hangzhou, 2017: 185
    [28] Ma Z G, Xu X H, Liu X E. Three analytical frameworks of causal inference and their applications. Chin J Eng, 2022, 44(7): 1231

    马忠贵, 徐晓晗, 刘雪儿. 因果推断三种分析框架及其应用综述. 工程科学学报, 2022, 44(7):1231
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  101
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 网络出版日期:  2022-01-11

目录

    /

    返回文章
    返回