• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钾离子电池合金负极与电解液界面作用的研究进展

褚绅旭 杨倩 李思远 谷梦佳 李嘉欣 赵玉晴 雷凯翔

褚绅旭, 杨倩, 李思远, 谷梦佳, 李嘉欣, 赵玉晴, 雷凯翔. 钾离子电池合金负极与电解液界面作用的研究进展[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2022.01.24.003
引用本文: 褚绅旭, 杨倩, 李思远, 谷梦佳, 李嘉欣, 赵玉晴, 雷凯翔. 钾离子电池合金负极与电解液界面作用的研究进展[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2022.01.24.003
CHU Shen-xu, YANG Qian, LI Si-yuan, GU Meng-jia, LI Jia-xin, ZHAO Yu-qing, LEI Kai-xiang. Research progress on the interface interaction between alloys and electrolytes in potassium-ion batteries[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.01.24.003
Citation: CHU Shen-xu, YANG Qian, LI Si-yuan, GU Meng-jia, LI Jia-xin, ZHAO Yu-qing, LEI Kai-xiang. Research progress on the interface interaction between alloys and electrolytes in potassium-ion batteries[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.01.24.003

钾离子电池合金负极与电解液界面作用的研究进展

doi: 10.13374/j.issn2095-9389.2022.01.24.003
基金项目: 国家自然科学基金资助项目(22005082);河北省自然科学基金资助项目(B2020202065);河北省高等学校科学技术研究资助项目(QN2020209)
详细信息
    通讯作者:

    E-mail: kaixianglei@hebut.edu.cn

  • 中图分类号: TM911.3

Research progress on the interface interaction between alloys and electrolytes in potassium-ion batteries

More Information
  • 摘要: 近年来,钾离子电池(KIBs)因钾元素丰度高、氧化还原电位低等优势受到越来越多的关注。负极是电池的重要组成部分之一,直接影响着电池的安全性、稳定性和能量密度。其中,合金负极基于多电子反应机制能够提供较高的理论比容量,有望提升全电池的能量密度。此外,其储钾电位远离了金属钾的沉积/析出电位,保证了电池的安全性。然而,(去)合金化过程中剧烈的体积波动会引起电极材料的破裂和粉化,进而导致容量快速衰减。优化电解液构筑稳定的电极–电解液界面是一种切实有效稳定合金负极结构的方法,主要包括:调控固体电解质膜的组分、调节钾离子的溶剂化结构、利用溶剂对电极的化学吸附作用等。它具备工艺简单、成本低廉等优点。本文综述了近年来钾离子电池合金负极与电解液界面作用的相关研究进展,总结了电解液的优化策略,分析了合金负极的储钾机制和电化学性能,重点阐述了合金负极与电解液的界面作用机制,并对未来钾离子电池电解液的发展提供了新的见解与思路。

     

  • 图  1  钾离子电池中钾盐、溶剂、添加剂的结构模型及LUMO和HOMO能级. (a)钾盐;(b)溶剂和添加剂[44]

    Figure  1.  Structural models, LUMO, and HOMO energy levels of potassium salts, solvents, and additives in KIBs: (a) potassium salts; (b) solvents and additives[44]

    图  2  钾离子电池中合金负极–电解液界面作用示意图[13,5863]

    Figure  2.  Schematic diagram of the interface interaction between alloy anodes and electrolytes in KIBs[13,5863]

    图  3  (a) K+–溶剂和钾盐–溶剂的溶剂化能;(b)K+–溶剂和钾盐–溶剂的HOMO与LUMO能级;(c)1.0 mol·L−1 KFSI/EC+DEC和(d)1.0 mol·L−1 KFSI /DME电解液中RP/C循环10周后的SEM图[71]

    Figure  3.  (a) Solvation energies of the K+–solvent and K salt–solvent complexes; (b) HOMO and LUMO energy levels of the K+–solvent and K salt–solvent complexes; SEM images of RP/C after 10 cycles in (c) 1.0 mol·L−1 KFSI/EC+DEC and (d) 1.0 mol·L−1 KFSI /DME[71]

    图  4  (a)BP/G电极在NCE、HCE和LHCE等电解液中的循环性能;(b)BP/G电极在HCE和LHCE中的离子扩散系数;(c)不同电解液中P和S元素的原子百分比;BP/G电极在LHCE中循环300周后的(d)TEM图以及相应的(e)EDS图谱[74]

    Figure  4.  (a) Cyclic performance of the BP/G electrodes in the NCE, HCE, and LHCE; (b) diffusion coefficients of K+ in the HCE and LHCE; (c) atomic percentage of the P and S elements in different electrolytes; (d) TEM image of the BP/G electrodes after 300 cycles in the LHCE and corresponding (e) EDS spectra[74]

    图  5  (a)Sn4P3在KIBs中循环50周的TEM图像[83];(b)Sn4P3在KIBs中循环50周后的C1s XPS图谱[83];(c)K+在Sn、Li2Sn5和LiSn3晶体中的扩散能垒,Li+在Sn晶体中的扩散能垒[85];(d)含20%–100% Li原子的钾基全电池电解液的EIS图[85]

    Figure  5.  (a) TEM image of Sn4P3 after 50 cycles in the KIBs[83]; (b) C1s XPS spectrum of Sn4P3 in the KIBs after 50 cycles[83]; (c) diffusion energy barriers of K+ in Sn, Li2Sn5, LiSn3, and Li+ in the Sn crystals[85]; (d) EIS plots of the potassium-based full batteries electrolyte containing 20%–100% Li atoms[85]

    图  6  (a)原始Sb电极的SEM图;(b)Sb负极在4.0 mol·L−1 KFSI/DME中循环30周后的SEM图;(c)Sb负极在1.0 mol·L−1 KFSI/EC+EMC中循环30周后的SEM图;(d)Sb电极在不同电解液中循环时的阻抗对比图;(e)K+–溶剂–阴离子络合物的HOMO'–LUMO能级差(ΔE)((1)—K+–DME–FSI;(2)—K+–2DME–FSI;(3)—K+–EC–FSI;(4)—K+–DME–TFSI);(f)KFSI和不同电解液的拉曼光谱,以及K+、FSI与溶剂分子之间相互作用的示意图[61]

    Figure  6.  (a) SEM image of the pristine Sb electrode; (b) SEM image of Sb anode after 30 cycles in 4.0 mol·L−1 KFSI DME; (c) SEM image of Sb anode after 30 cycles in 1.0 mol·L−1 KFSI EC+EMC; (d) impedance values of Sb electrodes when cycled in different electrolytes; (e) HOMO′–LUMO energy level differences (ΔE) of the K+–solvent–anion complexes ((1)—K+–DME–FSI; (2)—K+–2DME–FSI; (3)—K+–EC–FSI; (4)—K+–DME–TFSI); (f) Raman spectra of the KFSI and different electrolytes and corresponding illustrations of the interaction among K+, FSI, and solvents[61]

    图  7  (a0原始、(b)1周、(c)10周和(d)70周循环次数下的SEM图及DME分子在Bi表面上的三种吸附模型及吸附能. (e)桥位;(f)顶位;(g)穴位[62]

    Figure  7.  SEM images of the Bi electrodes after (a) pristine; (b) 1st; (c) 10th; (d) 70th different cycles and three adsorption models of the DME molecules on the Bi surface and corresponding adsorption energies: (e) bridge; (f) top; (g) hollow[62]

    图  8  (a)合金负极表面SEI膜的形成示意图[63];(b)Bi/rGO负极在KPF6电解液中循环10周后的TEM图[100];(c)Bi/rGO电极在KFSI电解液中循环10周后的TEM图(插图是放大后的TEM图)[100]

    Figure  8.  (a) Illustration of the SEI film formation on the alloy anode surface[63]; (b) TEM image of Bi/rGO in the KPF6-based electrolyte after 10 cycles[100]; (c) TEM image of Bi/rGO in the KFSI–based electrolyte after 10 cycles (Inset: corresponding enlarged TEM image)[100]

    图  9  (a) Si–石墨烯电极的充放电曲线[103];(b)纯Si电极的充放电曲线[103];(c)Si–石墨烯电极首周放电和充电的XRD谱图[103];(d)EC+DEC基电解液在Na–K/石墨和K/石墨电池中析出/沉积钾后的1H-NMR谱图(插图显示了DEC对应的峰强度变化)[105]

    Figure  9.  (a) Selected charge–discharge curves of the Si–graphene electrode[103]; (b) selected charge–discharge curves of the pure Si electrode[103]; (c) XRD patterns of the initial discharged and charged Si–graphene electrodes[103]; (d) 1H-NMR spectra of the EC/DEC-based electrolytes in Na–K/graphite and K/graphite cells upon potassiation/depotassiation (Inset: corresponding intensity change of the peaks in the DEC solvents)[105]

  • [1] Sultana I, Ramireddy T, Rahman M M, et al. Tin-based composite anodes for potassium-ion batteries. Chem Commun, 2016, 52(59): 9279 doi: 10.1039/C6CC03649J
    [2] Yang D, Liu C T, Rui X H, et al. Embracing high performance potassium-ion batteries with phosphorus-based electrodes: A review. Nanoscale, 2019, 11(33): 15402 doi: 10.1039/C9NR05588F
    [3] Wheeler S, Hurlbutt K, Pasta M. A new solid-state sodium-metal battery. Chem, 2018, 4(4): 666 doi: 10.1016/j.chempr.2018.03.015
    [4] Wang B, Ang E H, Yang Y, et al. Post-lithium-ion battery era: Recent advances in rechargeable potassium-ion batteries. Chem Eur J, 2021, 27(2): 512 doi: 10.1002/chem.202001811
    [5] Tan D H S, Xu P P, Yang H D, et al. Sustainable design of fully recyclable all solid-state batteries. MRS Energy Sustain, 2020, 7(1): 23 doi: 10.1557/mre.2020.25
    [6] Hosaka T, Matsuyama T, Kubota K, et al. Development of KPF6/KFSA binary-salt solutions for long-life and high-voltage K-ion batteries. ACS Appl Mater Interfaces, 2020, 12(31): 34873 doi: 10.1021/acsami.0c08002
    [7] Ji B F, Zhang F, Song X H, et al. A novel potassium-ion-based dual-ion battery. Adv Mater, 2017, 29(19): 1700519 doi: 10.1002/adma.201700519
    [8] Wang H W, Dong J H, Guo Q, et al. Highly stable potassium metal batteries enabled by regulating surface chemistry in ether electrolyte. Energy Storage Mater, 2021, 42: 526 doi: 10.1016/j.ensm.2021.08.013
    [9] Song K M, Liu C T, Mi L W, et al. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small, 2021, 17(9): e1903194 doi: 10.1002/smll.201903194
    [10] Lei K X, Li F J, Mu C N, et al. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy Environ Sci, 2017, 10(2): 552 doi: 10.1039/C6EE03185D
    [11] Wang Y R, Chen R P, Chen T, et al. Emerging non-lithium ion batteries. Energy Storage Mater, 2016, 4: 103 doi: 10.1016/j.ensm.2016.04.001
    [12] Liu Y J, Tai Z X, Zhang J, et al. Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation. Nat Commun, 2018, 9(1): 3645 doi: 10.1038/s41467-018-05786-1
    [13] Wang H W, Zhai D Y, Kang F Y. Solid electrolyte interphase (SEI) in potassium ion batteries. Energy Environ Sci, 2020, 13(12): 4583 doi: 10.1039/D0EE01638A
    [14] Chihara K, Katogi A, Kubota K, et al. KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. Chem Commun, 2017, 53(37): 5208 doi: 10.1039/C6CC10280H
    [15] Liu J, Bao Z N, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy, 2019, 4(3): 180 doi: 10.1038/s41560-019-0338-x
    [16] Liu Y W, Gao C, Dai L, et al. The features and progress of electrolyte for potassium ion batteries. Small, 2020, 16(44): e2004096 doi: 10.1002/smll.202004096
    [17] Xu Y N, Zhang J M, Li D. Recent developments in alloying-type anode materials for potassium-ion batteries. Chem Asian J, 2020, 15(11): 1648 doi: 10.1002/asia.202000030
    [18] Hou S, Ji X, Gaskell K, et al. Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. Science, 2021, 374(6564): 172 doi: 10.1126/science.abg3954
    [19] Hwang J Y, Myung S T, Sun Y K. Recent progress in rechargeable potassium batteries. Adv Funct Mater, 2018, 28(43): 1802938 doi: 10.1002/adfm.201802938
    [20] Qi S H, Deng J W, Zhang W C, et al. Recent advances in alloy-based anode materials for potassium ion batteries. Rare Met, 2020, 39(9): 970 doi: 10.1007/s12598-020-01454-w
    [21] Shimizu M, Yatsuzuka R, Koya T, et al. Tin oxides as a negative electrode material for potassium-ion batteries. ACS Appl Energy Mater, 2018, 1(12): 6865 doi: 10.1021/acsaem.8b01209
    [22] Tian Y, An Y L, Xiong S L, et al. A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. J Mater Chem A, 2019, 7(16): 9716 doi: 10.1039/C9TA02233C
    [23] Wang J, Fan L, Liu Z M, et al. In situ alloying strategy for exceptional potassium ion batteries. ACS Nano, 2019, 13(3): 3703 doi: 10.1021/acsnano.9b00634
    [24] Han C H, Han K, Wang X P, et al. Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries. Nanoscale, 2018, 10(15): 6820 doi: 10.1039/C8NR00237A
    [25] Liu D Y, Yang L, Chen Z Y, et al. Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries. Sci Bull, 2020, 65(12): 1003 doi: 10.1016/j.scib.2020.03.019
    [26] Chen K T, Tuan H Y. Bi–Sb nanocrystals embedded in phosphorus as high-performance potassium ion battery electrodes. ACS Nano, 2020, 14(9): 11648 doi: 10.1021/acsnano.0c04203
    [27] Zheng J, Yang Y, Fan X L, et al. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ Sci, 2019, 12(2): 615 doi: 10.1039/C8EE02836B
    [28] Zheng J M, Lochala J A, Kwok A, et al. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Adv Sci, 2017, 4(8): 1700032 doi: 10.1002/advs.201700032
    [29] Zhai P B, Liu L X, Gu X K, et al. Interface engineering for lithium metal anodes in liquid electrolyte. Adv Energy Mater, 2020, 10(34): 2001257 doi: 10.1002/aenm.202001257
    [30] Zhang X, Meng J S, Wang X P, et al. Comprehensive insights into electrolytes and solid electrolyte interfaces in potassium-ion batteries. Energy Storage Mater, 2021, 38: 30 doi: 10.1016/j.ensm.2021.02.036
    [31] Yang H, Chen C Y, Hwang J, et al. Potassium difluorophosphate as an electrolyte additive for potassium-ion batteries. ACS Appl Mater Interfaces, 2020, 12(32): 36168 doi: 10.1021/acsami.0c09562
    [32] Liu X, Mariani A, Zarrabeitia M, et al. Effect of organic cations in locally concentrated ionic liquid electrolytes on the electrochemical performance of lithium metal batteries. Energy Storage Mater, 2022, 44: 370 doi: 10.1016/j.ensm.2021.10.034
    [33] Fiore M, Wheeler S, Hurlbutt K, et al. Paving the way toward highly efficient, high-energy potassium-ion batteries with ionic liquid electrolytes. Chem Mater, 2020, 32(18): 7653 doi: 10.1021/acs.chemmater.0c01347
    [34] Onuma H, Kubota K, Muratsubaki S, et al. Application of ionic liquid as K-ion electrolyte of graphite// K2Mn[Fe(CN)6]cell. ACS Energy Lett, 2020, 5(9): 2849 doi: 10.1021/acsenergylett.0c01393
    [35] Verma R, Didwal P N, Hwang J Y, et al. Recent progress in electrolyte development and design strategies for next-generation potassium-ion batteries. Batter Supercaps, 2021, 4(9): 1428 doi: 10.1002/batt.202100029
    [36] Ma J M, Li Y T. Editorial for advanced energy storage and conversion materials and technologies. Rare Met, 2020, 39(9): 967 doi: 10.1007/s12598-020-01525-y
    [37] Xu J, Dou S M, Cui X Y, et al. Potassium-based electrochemical energy storage devices: Development status and future prospect. Energy Storage Mater, 2021, 34: 85 doi: 10.1016/j.ensm.2020.09.001
    [38] Suo L M, Borodin O, Gao T, et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science, 2015, 350(6263): 938 doi: 10.1126/science.aab1595
    [39] Ge J M, Yi X H, Fan L, et al. An all-organic aqueous potassium dual-ion battery. J Energy Chem, 2021, 57: 28 doi: 10.1016/j.jechem.2020.08.049
    [40] Su D W, McDonagh A, Qiao S Z, et al. High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv Mater, 2017, 29(1): 1604007 doi: 10.1002/adma.201604007
    [41] Li L, Zhao S, Hu Z, et al. Developing better ester- and ether-based electrolytes for potassium-ion batteries. Chem Sci, 2021, 12(7): 2345 doi: 10.1039/D0SC06537D
    [42] Moyer K, Donohue J, Ramanna N, et al. High-rate potassium ion and sodium ion batteries by co-intercalation anodes and open framework cathodes. Nanoscale, 2018, 10(28): 13335 doi: 10.1039/C8NR01685B
    [43] Cheng X B, Zhang R, Zhao C Z, et al. A review of solid electrolyte interphases on lithium metal anode. Adv Sci, 2015, 3(3): 1500213
    [44] Zhou M F, Bai P X, Ji X, et al. Electrolytes and interphases in potassium ion batteries. Adv Mater, 2021, 33(7): e2003741 doi: 10.1002/adma.202003741
    [45] Peljo P, Girault H H. Electrochemical potential window of battery electrolytes: The HOMO-LUMO misconception. Energy Environ Sci, 2018, 11(9): 2306 doi: 10.1039/C8EE01286E
    [46] Naylor A J, Carboni M, Valvo M, et al. Interfacial reaction mechanisms on graphite anodes for K-ion batteries. ACS Appl Mater Interfaces, 2019, 11(49): 45636 doi: 10.1021/acsami.9b15453
    [47] Zhang J, Wang D W, Lv W, et al. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ Sci, 2017, 10(1): 370 doi: 10.1039/C6EE03367A
    [48] Fan L, Ma R F, Zhang Q F, et al. Graphite anode for a potassium-ion battery with unprecedented performance. Angew Chem Int Ed, 2019, 58(31): 10500 doi: 10.1002/anie.201904258
    [49] Zhang L, Gu X, Mao X N, et al. Boosting fast and stable potassium storage of iron selenide/carbon nanocomposites by electrolyte salt and solvent chemistry. J Power Sources, 2021, 486: 229373 doi: 10.1016/j.jpowsour.2020.229373
    [50] Ma L, Li J L, Wu T H, et al. Re-oxidation reconstruction process of solid electrolyte interphase layer derived from highly active anion for potassium-ion batteries. Nano Energy, 2021, 87: 106150 doi: 10.1016/j.nanoen.2021.106150
    [51] Zhu S D, Chen J. Dual strategy with Li-ion solvation and solid electrolyte interphase for high Coulombic efficiency of lithium metal anode. Energy Storage Mater, 2022, 44: 48 doi: 10.1016/j.ensm.2021.10.007
    [52] Gu M Y, Fan L, Zhou J, et al. Regulating solvent molecule coordination with KPF6 for superstable graphite potassium anodes. ACS Nano, 2021, 15(5): 9167 doi: 10.1021/acsnano.1c02727
    [53] Fan X L, Ji X, Chen L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat Energy, 2019, 4(10): 882 doi: 10.1038/s41560-019-0474-3
    [54] Li L, Liu L J, Hu Z, et al. Understanding high-rate K+–solvent co-intercalation in natural graphite for potassium-ion batteries. Angew Chem Int Ed, 2020, 59(31): 12917 doi: 10.1002/anie.202001966
    [55] Yang F H, Hao J N, Long J, et al. Achieving high-performance metal phosphide anode for potassium ion batteries via concentrated electrolyte chemistry. Adv Energy Mater, 2021, 11(6): 2003346 doi: 10.1002/aenm.202003346
    [56] Xiao J. How lithium dendrites form in liquid batteries. Science, 2019, 366(6464): 426 doi: 10.1126/science.aay8672
    [57] Lee H, Lim H S, Ren X D, et al. Detrimental effects of chemical crossover from the lithium anode to cathode in rechargeable lithium metal batteries. ACS Energy Lett, 2018, 3(12): 2921 doi: 10.1021/acsenergylett.8b01819
    [58] Lei K X, Zhu Z, Yin Z X, et al. Dual interphase layers in situ formed on a manganese-based oxide cathode enable stable potassium storage. Chem, 2019, 5(12): 3220 doi: 10.1016/j.chempr.2019.10.008
    [59] Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev, 2014, 114(23): 11503 doi: 10.1021/cr500003w
    [60] Yan C, Xu R, Xiao Y, et al. Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv Funct Mater, 2020, 30(23): 1909887 doi: 10.1002/adfm.201909887
    [61] Zhou L, Cao Z, Zhang J, et al. Electrolyte-mediated stabilization of high-capacity micro-sized antimony anodes for potassium-ion batteries. Adv Mater, 2021, 33(8): e2005993 doi: 10.1002/adma.202005993
    [62] Lei K X, Wang C C, Liu L J, et al. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew Chem Int Ed, 2018, 57(17): 4687 doi: 10.1002/anie.201801389
    [63] Huang J Q, Lin X Y, Tan H, et al. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv Energy Mater, 2018, 8(19): 1703496 doi: 10.1002/aenm.201703496
    [64] Huang X L, Zhao F Y, Qi Y, et al. Red phosphorus: A rising star of anode materials for advanced K-ion batteries. Energy Storage Mater, 2021, 42: 193 doi: 10.1016/j.ensm.2021.07.030
    [65] Sangster J M. K-P (potassium-phosphorus) system. J Phase Equilib Diffus, 2010, 31(1): 68 doi: 10.1007/s11669-009-9614-y
    [66] Liu X, Xiao B W, Daali A, et al. Stress- and interface-compatible red phosphorus anode for high-energy and durable sodium-ion batteries. ACS Energy Lett, 2021, 6(2): 547 doi: 10.1021/acsenergylett.0c02650
    [67] Zhang W C, Wu Z B, Zhang J, et al. Unraveling the effect of salt chemistry on long-durability high-phosphorus-concentration anode for potassium ion batteries. Nano Energy, 2018, 53: 967 doi: 10.1016/j.nanoen.2018.09.058
    [68] Liu C, Han M Y, Cao Y, et al. Unlocking the dissolution mechanism of phosphorus anode for lithium-ion batteries. Energy Storage Mater, 2021, 37: 417 doi: 10.1016/j.ensm.2021.02.030
    [69] Xiao W, Li X F, Cao B, et al. Constructing high-rate and long-life phosphorus/carbon anodes for potassium-ion batteries through rational nanoconfinement. Nano Energy, 2021, 83: 105772 doi: 10.1016/j.nanoen.2021.105772
    [70] Sultana I, Rahman M M, Ramireddy T, et al. High capacity potassium-ion battery anodes based on black phosphorus. J Mater Chem A, 2017, 5(45): 23506 doi: 10.1039/C7TA02483E
    [71] Wang H, Yu D D, Wang X, et al. Electrolyte chemistry enables simultaneous stabilization of potassium metal and alloying anode for potassium-ion batteries. Angew Chem Int Ed, 2019, 58(46): 16451 doi: 10.1002/anie.201908607
    [72] Zhu Z Q, Tang Y X, Lv Z S, et al. Fluoroethylene carbonate enabling a robust LiF-rich solid electrolyte interphase to enhance the stability of the MoS2 anode for lithium-ion storage. Angew Chem Int Ed, 2018, 57(14): 3656 doi: 10.1002/anie.201712907
    [73] Li Q, Cao Z, Wahyudi W, et al. Unraveling the new role of an ethylene carbonate solvation shell in rechargeable metal ion batteries. ACS Energy Lett, 2021, 6(1): 69 doi: 10.1021/acsenergylett.0c02140
    [74] Du X Q, Zhang B. Robust solid electrolyte interphases in localized high concentration electrolytes boosting black phosphorus anode for potassium-ion batteries. ACS Nano, 2021, 15(10): 16851 doi: 10.1021/acsnano.1c07414
    [75] Ying H J, Han W Q. Metallic Sn-based anode materials: Application in high-performance lithium-ion and sodium-ion batteries. Adv Sci, 2017, 4(11): 1700298 doi: 10.1002/advs.201700298
    [76] Zhang N, Sun C C, Huang Y Q, et al. Tuning electrolyte enables microsized Sn as an advanced anode for Li-ion batteries. J Mater Chem A, 2021, 9(3): 1812 doi: 10.1039/D0TA10861H
    [77] Wang B P, Lv R, Lan D S. Preparation and electrochemical properties of Sn/C composites. Rare Met, 2019, 38(10): 996 doi: 10.1007/s12598-019-01289-0
    [78] Kim C, Kim I, Kim H, et al. A self-healing Sn anode with an ultra-long cycle life for sodium-ion batteries. J Mater Chem A, 2018, 6(45): 22809 doi: 10.1039/C8TA09544B
    [79] Sun P C, Davis J III, Cao L X, et al. High capacity 3D structured tin-based electroplated Li-ion battery anodes. Energy Storage Mater, 2019, 17: 151 doi: 10.1016/j.ensm.2018.11.017
    [80] Yu M, Yang L, Sun L Y, et al. Refined tin nanoparticles by oxidation-reduction treatment for use in potassium-ion batteries. ACS Appl Nano Mater, 2021, 4(5): 4432 doi: 10.1021/acsanm.0c03475
    [81] Wu J X, Zhang Q, Liu S L, et al. Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries. Nano Energy, 2020, 77: 105118 doi: 10.1016/j.nanoen.2020.105118
    [82] Wang H, Xing Z, Hu Z K, et al. Sn-based submicron-particles encapsulated in porous reduced graphene oxide network: Advanced anodes for high-rate and long life potassium-ion batteries. Appl Mater Today, 2019, 15: 58 doi: 10.1016/j.apmt.2018.12.020
    [83] Zhou J H, Lian X Y, You Y Z, et al. Revealing the various electrochemical behaviors of Sn4P3 binary alloy anodes in alkali metal ion batteries. Adv Funct Mater, 2021, 31(31): 2102047 doi: 10.1002/adfm.202102047
    [84] Jow T R, Delp S A, Allen J L, et al. Factors limiting Li+charge transfer kinetics in Li-ion batteries. J Electrochem Soc, 2018, 165(2): A361 doi: 10.1149/2.1221802jes
    [85] Jiang C L, Meng X, Zheng Y P, et al. High-performance potassium-ion-based full battery enabled by an ionic-drill strategy. CCS Chem, 2021, 3(9): 85 doi: 10.31635/ccschem.021.202000463
    [86] Yu S, Kim S O, Kim H S, et al. Computational screening of anode materials for potassium-ion batteries. Int J Energy Res, 2019, 43(13): 7646
    [87] Bian X, Dong Y, Zhao D D, et al. Microsized antimony as a stable anode in fluoroethylene carbonate containing electrolytes for rechargeable lithium-/sodium-ion batteries. ACS Appl Mater Interfaces, 2020, 12(3): 3554 doi: 10.1021/acsami.9b18006
    [88] Liu J, Yu L T, Wu C, et al. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett, 2017, 17(3): 2034 doi: 10.1021/acs.nanolett.7b00083
    [89] Li X Y, Qu J K, Yin H Y. Electrolytic alloy-type anodes for metal-ion batteries. Rare Met, 2021, 40(2): 329 doi: 10.1007/s12598-020-01537-8
    [90] Han Y, Li T Q, Li Y, et al. Stabilizing antimony nanocrystals within ultrathin carbon nanosheets for high-performance K-ion storage. Energy Storage Mater, 2019, 20: 46 doi: 10.1016/j.ensm.2018.11.004
    [91] Liu Q, Fan L, Ma R F, et al. Super long-life potassium-ion batteries based on an antimony@carbon composite anode. Chem Commun, 2018, 54(83): 11773 doi: 10.1039/C8CC05257C
    [92] Liu M C, Yang Z Z, Shen Y F, et al. Chemically presodiated Sb with a fluoride-rich interphase as a cycle-stable anode for high-energy sodium ion batteries. J Mater Chem A, 2021, 9(9): 5639 doi: 10.1039/D0TA10880D
    [93] Zhang J, Cao Z, Zhou L, et al. Model-based design of stable electrolytes for potassium ion batteries. ACS Energy Lett, 2020, 5(10): 3124 doi: 10.1021/acsenergylett.0c01634
    [94] Wu M G, Xu B L, Zhang Y F, et al. Perspectives in emerging bismuth electrochemistry. Chem Eng J, 2020, 381: 122558 doi: 10.1016/j.cej.2019.122558
    [95] Lei K X, Wang J, Chen C, et al. Recent progresses on alloy-based anodes for potassium-ion batteries. Rare Met, 2020, 39(9): 989 doi: 10.1007/s12598-020-01463-9
    [96] Su S L, Liu Q, Wang J, et al. Control of SEI formation for stable potassium-ion battery anodes by Bi–MOF-derived nanocomposites. ACS Appl Mater Interfaces, 2019, 11(25): 22474 doi: 10.1021/acsami.9b06379
    [97] Xiong P X, Wu J X, Zhou M F, et al. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano, 2020, 14(1): 1018 doi: 10.1021/acsnano.9b08526
    [98] Zhou L, Cao Z, Wahyudi W, et al. Electrolyte engineering enables high stability and capacity alloying anodes for sodium and potassium ion batteries. ACS Energy Lett, 2020, 5(3): 766 doi: 10.1021/acsenergylett.0c00148
    [99] Zhang R D, Bao J Z, Wang Y H, et al. Concentrated electrolytes stabilize bismuth-potassium batteries. Chem Sci, 2018, 9(29): 6193 doi: 10.1039/C8SC01848K
    [100] Zhang Q, Mao J F, Pang W K, et al. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv Energy Mater, 2018, 8(15): 1703288 doi: 10.1002/aenm.201703288
    [101] Cao Z, Zheng X Y, Qu Q T, et al. Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode-electrolyte interphase. Adv Mater, 2021, 33(38): e2103178 doi: 10.1002/adma.202103178
    [102] Sangster J. K−Si (potassium-silicon) system. J Phs Eqil and Diff, 2006, 27(2): 190
    [103] Sultana I, Rahman M M, Chen Y, et al. Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv Funct Mater, 2018, 28(5): 1703857 doi: 10.1002/adfm.201703857
    [104] Xue L G, Gao H C, Zhou W D, et al. Liquid K-Na alloy anode enables dendrite-free potassium batteries. Adv Mater, 2016, 28(43): 9608 doi: 10.1002/adma.201602633
    [105] Lei Y, Qin L, Liu R L, et al. Exploring stability of nonaqueous electrolytes for potassium-ion batteries. ACS Appl Energy Mater, 2018, 1(5): 1828 doi: 10.1021/acsaem.8b00214
  • 加载中
图(9)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  96
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24
  • 网络出版日期:  2022-03-23

目录

    /

    返回文章
    返回