• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理对SLM-316L不锈钢组织结构及钝化行为的影响机制

段智为 满成 崔中雨 董超芳 王昕 崔洪芝

段智为, 满成, 崔中雨, 董超芳, 王昕, 崔洪芝. 热处理对SLM-316L不锈钢组织结构及钝化行为的影响机制[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2022.01.26.002
引用本文: 段智为, 满成, 崔中雨, 董超芳, 王昕, 崔洪芝. 热处理对SLM-316L不锈钢组织结构及钝化行为的影响机制[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2022.01.26.002
DUAN Zhi-wei, MAN Cheng, CUI Zhong-yu, DONG Chao-fang, WANG Xin, CUI Hong-zhi. Effect of heat treatment on the microstructure and passive behavior of 316L stainless steel fabricated by selective laser melting[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.01.26.002
Citation: DUAN Zhi-wei, MAN Cheng, CUI Zhong-yu, DONG Chao-fang, WANG Xin, CUI Hong-zhi. Effect of heat treatment on the microstructure and passive behavior of 316L stainless steel fabricated by selective laser melting[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.01.26.002

热处理对SLM-316L不锈钢组织结构及钝化行为的影响机制

doi: 10.13374/j.issn2095-9389.2022.01.26.002
基金项目: 国家自然科学基金资助项目(51901216)
详细信息
    通讯作者:

    E-mail: mancheng@ouc.edu.cn

  • 中图分类号: TG172.6

Effect of heat treatment on the microstructure and passive behavior of 316L stainless steel fabricated by selective laser melting

More Information
  • 摘要: 对SLM-316L不锈钢在900 ℃下进行不同时间的热处理,结合热处理后SLM-316L不锈钢的组织结构和腐蚀行为研究,揭示了SLM-316L不锈钢在900 ℃热处理过程中组织结构的演变规律以及其对钝化行为的作用机制。研究结果表明,900 ℃热处理时,在组织结构方面,SLM-316L不锈钢晶粒的基本形状和尺寸没有明显变化,但是随着保温时间延长,SLM-316L不锈钢中的位错和亚晶界逐渐消失,同时伴有MnS颗粒物沿晶界析出;在耐蚀性能方面,热处理对SLM-316L不锈钢的耐蚀性能产生重要影响,在含有NaCl的缓冲溶液中,SLM-316L不锈钢的点蚀电位随着保温时间延长逐渐降低,同时电化学阻抗逐渐减小;此外,在钝化膜性质方面,不同热处理时间试样上形成的钝化膜有明显差异,随着保温时间延长,SLM-316L不锈钢钝化膜的厚度逐渐减小,载流子的密度以及扩散系数变大。最后,通过构建不锈钢钝化膜能带结构和空间电荷层的理论模型,讨论了热处理对SLM-316L不锈钢钝化行为的影响机制。

     

  • 图  1  900 ℃时不同热处理时间下SLM-316L不锈钢的TEM组织结构分析. (a)~(a1)未热处理;(b)~(b1) 0.5 h;(c)~(c1) 5.0 h;(d) 5.0 h试样中MnS及能谱分析

    Figure  1.  TEM images of SLM-316L SS with different heating treatment time at 900 ℃: (a)–(a1) as-received sample; (b)–(b1) 0.5 h; (c)–(c1) 5.0 h; (d) MnS inclusion in the sample heated for 5.0 h and EDS analysis

    图  2  不同热处理时间下SLM 316L不锈钢在硼酸–硼酸钠缓冲溶液中的动电位极化曲线.(a) 未添加NaCl;(b) 添加0.1 mol·L–1 NaCl

    Figure  2.  Potentiodynamic polarization curves of the buffer solutions: (a) without NaCl; (b) with 0.1 mol·L–1 NaCl

    图  3  不同热处理时间下SLM-316L不锈钢在硼酸–硼酸钠溶液中的电化学阻抗图谱. (a) Nyquist图;(b) Bode图

    Figure  3.  EIS results of SLM-316L SS with different heat treatment in buffer solution: (a) Nyquist diagram; (b) Bode diagram

    图  4  拟合EIS结果的等效电路图

    Figure  4.  Equivalent circuit used for EIS fitting

    图  5  根据拟合结果计算的电容和钝化膜厚度

    Figure  5.  Capacitance and film thickness calculated using the fitting results

    图  6  不同热处理时间SLM-316L不锈钢在硼酸–硼酸钠缓冲溶液中恒电位极化1 h的lgi–lgt曲线以及钝化因子k的拟合值.(a)~(e) 保温时间分别为0、0.5、1.0、3.0和5.0 h;(f) 钝化因子k

    Figure  6.  Double logarithmic curves of lgi–lgt during potentiostatic polarization for 1 h of SLM-316L SS with different heat treatment: (a)–(e) 0, 0.5, 1.0, 3.0, and 5.0 h; (f) fitting values of passivation factor k

    图  7  SLM-316L不锈钢Mott-Schottky分析结果. (a)未热处理试样的Mott-Schottky曲线;(b)平带电位;(c) 载流子密度;(d) 扩散系数

    Figure  7.  Analysis of the Mott-Schottky curvefor SLM- 316L SS: (a) Mott-Schottky curve of the as-received SLM-316L SS; (b) flat band potentials; (c) carrier density; (d) diffusion coefficient

    图  8  不锈钢钝化膜相关的理论模型. (a) 点缺陷模型,间隙阳离子(Mix+)、氧空位(VO)、阳离子空位(VMx);(b) 钝化膜的能带结构和空间电荷层

    Figure  8.  Models related to the passive film: (a) PDM; (b) energy band structure and space charge layer

    表  1  AISI316L不锈钢的化学成分(质量分数)

    Table  1.   Composition of AISI 316L stainless steel powders %

    CrNiMoMnSiCPSFe
    17.510.42.71.20.40.02≤0.02≤0.01Bal.
    下载: 导出CSV

    表  2  图4中EIS数据拟合结果

    Table  2.   Fitting result of the EIS data in Fig.4

    Heat treatment/hRS / (Ω·cm2Q1Rd/(Ω·cm2Q2R2/(105 Ω·cm2
    Y0 /(10–5 Ω–1·cm–2·snn1Y0 /(10–5 Ω–1·cm–2·snn2
    073.698.2010.807136.72.0610.8031.420
    0.574.898.4080.81440.842.9580.8911.237
    1.071.837.1380.80634.852.9260.7851.062
    3.065.688.6260.81241.303.3520.8721.216
    5.073.358.9820.811157.53.4410.7710.665
    下载: 导出CSV

    表  3  Mott-Schottky曲线的拟合结果

    Table  3.   Fitting result of Mott-Schottky curves

    Heating time/hω1/(1020 cm−3)ω2/(1020 cm−3)b/V−1
    03.60±0.132.95±0.09−4.63±0.69
    0.53.39±0.152.88±0.13−4.63±0.85
    1.03.07±0.152.87±0.10−3.40±0.42
    3.02.95±0.242.71±0.13−3.84±0.10
    5.02.32±0.401.54±0.33−2.08±0.98
    下载: 导出CSV
  • [1] Todd I. Metallurgy: No more tears for metal 3D printing. Nature, 2017, 549(7672): 342 doi: 10.1038/549342a
    [2] Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys. Nature, 2017, 549(7672): 365 doi: 10.1038/nature23894
    [3] Liang X, Hor A, Robert C, et al. High cycle fatigue behavior of 316L steel fabricated by laser powder bed fusion: Effects of surface defect and loading mode. Int J Fatigue, 2022, 160: 106843 doi: 10.1016/j.ijfatigue.2022.106843
    [4] Contuzzi N, Campanelli S L, Ludovico A D. 3D finite element analysis in the selective laser melting process. Int J Simul Model, 2011, 10(3): 113 doi: 10.2507/IJSIMM10(3)1.169
    [5] Bertsch K M, Meric de Bellefon G, Kuehl B, et al. Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L. Acta Mater, 2020, 199: 19 doi: 10.1016/j.actamat.2020.07.063
    [6] Man C, Duan Z W, Cui Z Y, et al. The effect of sub-grain structure on intergranular corrosion of 316L stainless steel fabricated via selective laser melting. Mater Lett, 2019, 243: 157 doi: 10.1016/j.matlet.2019.02.047
    [7] Man C, Dong C F, Liu T T, et al. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid. Appl Surf Sci, 2019, 467-468: 193 doi: 10.1016/j.apsusc.2018.10.150
    [8] Sato N, Cohen M. The kinetics of anodic oxidation of iron in neutral solution: I. Steady growth region. J Electrochem Soc, 1964, 111(5): 512
    [9] Vetter K J. General kinetics of passive layers on metals. Electrochimica Acta, 1971, 16(11): 1923 doi: 10.1016/0013-4686(71)85147-2
    [10] MacDonald D D. The history of the Point Defect Model for the passive state: A brief review of film growth aspects. Electrochimica Acta, 2011, 56(4): 1761 doi: 10.1016/j.electacta.2010.11.005
    [11] Kong D, Ni X, Dong C, et al. Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells. Electrochim Acta, 2018, 276: 293 doi: 10.1016/j.electacta.2018.04.188
    [12] Duan Z W, Man C, Dong C F, et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: Pitting mechanism induced by gas pores. Corros Sci, 2020, 167: 108520 doi: 10.1016/j.corsci.2020.108520
    [13] Deng P, Song M, Yang J, et al. On the thermal coarsening and transformation of nanoscale oxide inclusions in 316L stainless steel manufactured by laser powder bed fusion and its influence on impact toughness. Mater Sci Eng A, 2022, 835: 142690 doi: 10.1016/j.msea.2022.142690
    [14] Fernández-Domene R M, Blasco-Tamarit E, García-García D M, et al. Passive and transpassive behaviour of alloy 31 in a heavy brine LiBr solution. Electrochimica Acta, 2013, 95: 1 doi: 10.1016/j.electacta.2013.02.024
    [15] Betova I, Bojinov M, Laitinen T, et al. The transpassive dissolution mechanism of highly alloyed stainless steels. Corros Sci, 2002, 44(12): 2675 doi: 10.1016/S0010-938X(02)00073-2
    [16] Wang Y, Yan X Y, Man C, et al. Microstructure and corrosion behavior of SLM-Ti6Al4V with different fabrication angles in F--containing solutions. Chin J Eng, 2021, 43(5): 676

    王尧, 阎笑盈, 满成, 等. 不同打印角度SLM-Ti6Al4V组织结构及其在含氟离子溶液中的腐蚀行为. 工程科学学报, 2021, 43(5):676
    [17] Guitián B, Nóvoa X R, Puga B. Electrochemical Impedance Spectroscopy as a tool for materials selection: Water for haemodialysis. Electrochimica Acta, 2011, 56(23): 7772 doi: 10.1016/j.electacta.2011.03.055
    [18] Guiñón-Pina V, Igual-Muñoz A, García-Antón J. Influence of pH on the electrochemical behaviour of a duplex stainless steel in highly concentrated LiBr solutions. Corros Sci, 2011, 53(2): 575 doi: 10.1016/j.corsci.2010.09.066
    [19] Qiao Y X, Zheng Y G, Okafor P C, et al. Electrochemical behaviour of high nitrogen bearing stainless steel in acidic chloride solution: Effects of oxygen, acid concentration and surface roughness. Electrochimica Acta, 2009, 54(8): 2298 doi: 10.1016/j.electacta.2008.10.038
    [20] Subba Rao R V, Wolff U, Baunack S, et al. Corrosion behaviour of the amorphous Mg65Y10Cu15Ag10 alloy. Corros Sci, 2003, 45(4): 817 doi: 10.1016/S0010-938X(02)00131-2
    [21] Cheng Y F, Luo J L. Electronic structure and pitting susceptibility of passive film on carbon steel. Electrochimica Acta, 1999, 44(17): 2947 doi: 10.1016/S0013-4686(99)00011-0
    [22] Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy. Corros Sci, 2010, 52(11): 3646 doi: 10.1016/j.corsci.2010.07.013
    [23] Belo M D C, Hakiki N E, Ferreira M G S. Semiconducting properties of passive films formed on nickel-base alloys type alloy 600: Influence of the alloying elements. Electrochimica Acta, 1999, 44(14): 2473 doi: 10.1016/S0013-4686(98)00372-7
    [24] Fattah-Alhosseini A, Soltani F, Shirsalimi F, et al. The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM). Corros Sci, 2011, 53(10): 3186 doi: 10.1016/j.corsci.2011.05.063
    [25] MacDonald D D, Urquidi-Macdonald M. Theory of steady-state passive films. J Electrochem Soc, 1990, 137(8): 2395 doi: 10.1149/1.2086949
    [26] Ma J, Zhang B, Fu Y, et al. Effect of cold deformation on corrosion behavior of selective laser melted 316L stainless steel bipolar plates in a simulated environment for proton exchange membrane fuel cells. Corros Sci, 2022, 201: 110257 doi: 10.1016/j.corsci.2022.110257
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  42
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-26
  • 网络出版日期:  2022-04-19

目录

    /

    返回文章
    返回