• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻质混凝土拼装墙板填充钢框架协同抗震性能试验研究

李悦 高崇铭 宋波 李晓润 刘楚涵

李悦, 高崇铭, 宋波, 李晓润, 刘楚涵. 轻质混凝土拼装墙板填充钢框架协同抗震性能试验研究[J]. 工程科学学报, 2023, 45(8): 1364-1375. doi: 10.13374/j.issn2095-9389.2022.04.26.001
引用本文: 李悦, 高崇铭, 宋波, 李晓润, 刘楚涵. 轻质混凝土拼装墙板填充钢框架协同抗震性能试验研究[J]. 工程科学学报, 2023, 45(8): 1364-1375. doi: 10.13374/j.issn2095-9389.2022.04.26.001
LI Yue, GAO Chong-ming, SONG Bo, LI Xiao-run, LIU Chu-han. Experimental study of the synergistic seismic performance of steel frame filled with assembled lightweight concrete wall panels[J]. Chinese Journal of Engineering, 2023, 45(8): 1364-1375. doi: 10.13374/j.issn2095-9389.2022.04.26.001
Citation: LI Yue, GAO Chong-ming, SONG Bo, LI Xiao-run, LIU Chu-han. Experimental study of the synergistic seismic performance of steel frame filled with assembled lightweight concrete wall panels[J]. Chinese Journal of Engineering, 2023, 45(8): 1364-1375. doi: 10.13374/j.issn2095-9389.2022.04.26.001

轻质混凝土拼装墙板填充钢框架协同抗震性能试验研究

doi: 10.13374/j.issn2095-9389.2022.04.26.001
基金项目: 国家自然科学基金资助项目(51408009, 52078038);科技部国家级外专项目(G2021105009L);北京市属高校基本科研业务费资助项目(110052971921/062)
详细信息
    通讯作者:

    E-mail: songbo@ces.ustb.edu.cn

  • 中图分类号: TH213.3

Experimental study of the synergistic seismic performance of steel frame filled with assembled lightweight concrete wall panels

More Information
  • 摘要: 为了研究墙板与钢框架结构之间的协同抗震性能,对采用不同墙框连接节点的轻质混凝土拼装墙板填充钢框架进行了低周往复荷载试验。通过对比试件的承载力、滞回性能、刚度、耗能以及延性性能,探讨了轻质混凝土拼装墙板及其整体性对结构抗震性能的影响。结果表明:填充墙板钢框架结构的最终破坏形态以墙板挤压开裂,框架梁柱端部翼缘屈曲为主;轻质混凝土拼装墙板与钢框架协同工作,有利于提高结构整体的承载力和变形能力,减轻钢框架在平面内的屈曲破坏;与刚性节点相比,采用柔性节点连接墙板与钢框架对结构的承载力、层间刚度和耗能能力更为有利;增强拼装墙板的整体性,有助于提高结构整体刚度、变形和耗能能力。研究结果可为轻质混凝土拼装墙板填充钢框架结构的抗震设计提供参考。

     

  • 图  1  试件几何尺寸. (a) CG I; (b) CG II; (c) JG I; (d) JG II; (e) KJ

    Figure  1.  Geometry of the specimen: (a) CG I; (b) CG II; (c) JG I; (d) JG II; (e) KJ

    图  2  墙板配筋示意

    Figure  2.  Reinforcement of wall panels

    图  3  墙板与框架连接节点示意. (a) 刚性节点; (b)柔性节点

    Figure  3.  Connectors between the panel and the frame: (a) hooking joint; (b) sliding joint

    图  4  试件加载布置. (a) 示意图; (b) 试验现场

    Figure  4.  Test setup: (a) general view; (b) test site

    图  5  测点布置示意

    Figure  5.  Arrangement of measurement points

    图  6  加载制度

    Figure  6.  Loading protocol

    图  7  CG I破坏特征. (a) 墙板斜向裂缝; (b) 框架柱脚翼缘屈曲; (c) 墙板混凝土压碎; (d) 最终破坏

    Figure  7.  Damage modes of CG I: (a) diagonal cracking of wall panels; (b) buckling of the flange in the column; (c) crushing of wall panel concrete; (d) ultimate failure

    图  8  CG II破坏特征. (a) 柱脚翼缘屈曲; (b) 墙板混凝土压碎; (c)最终破坏

    Figure  8.  Damage modes of CG II: (a) buckling of the flange in the column; (b) crushing of the wall panel; (d) ultimate failure

    图  9  JG I破坏特征. (a) 柱翼缘屈曲; (b) 纤维布破坏; (c) 墙板接缝处破坏; (d) 框架柱严重屈曲; (e) 最终破坏

    Figure  9.  Damage modes of JG I: (a) buckling of the column flange; (b) tear of the carbon fiber cloth; (c) damage of the panel joint; (d) serious buckling of the column; (e) ultimate failure

    图  10  JG II破坏特征. (a) 柱翼缘屈曲; (b) 纤维布破坏; (c) 墙板开裂; (d) 柱翼缘严重变形; (e) 最终破坏

    Figure  10.  Damage modes of JG II: (a) buckling of the column flange; (b) tear of the carbon fiber cloth; (c) crack of the panel; (d) serious buckling of the column; (e) ultimate failure

    图  11  KJ破坏特征. (a) 焊缝开裂; (b) 柱脚屈曲; (c) 整体变形; (d) 平面外失稳

    Figure  11.  Damage modes of KJ: (a) welding crack; (b) buckling of the footing; (c) whole deformation; (d) out-of-plane instability

    图  12  试件滞回曲线. (a) CG I; (b) CG II; (c) JG I; (d) JG II; (e) KJ

    Figure  12.  Hysteretic loops of the specimen: (a) CG I; (b) CG II; (c) JG I; (d) JG II; (e) KJ

    图  13  骨架曲线

    Figure  13.  Skeleton curves of specimens

    图  14  归一化刚度退化曲线

    Figure  14.  Curves of normalized stiffness degradation

    图  15  强度退化曲线

    Figure  15.  Curve of strength degradation

    图  16  累积耗能曲线

    Figure  16.  Curve of cumulative energy dissipation

    图  17  荷载−应变曲线. (a) CG I; (b) CG II; (c) JG I; (d) JG II; (e) KJ

    Figure  17.  Curve of load−strain: (a) CG I; (b) CG II; (c) JG I; (d) JG II; (e) KJ

    表  1  试件主要参数

    Table  1.   Main parameters of specimens

    Specimen No.Wall panel typesConnectionReinforcing method
    CG IVertical wall panelsHooking connector with beam
    CG IIVertical wall panelsSliding connector with beam
    JG IReinforced vertical wall panelsHooking connector with beamReinforced at both ends
    JG IIReinforced vertical wall panelsSliding connector with beamReinforced at both ends
    KJ
    下载: 导出CSV

    表  2  钢材力学性能

    Table  2.   Mechanical properties of steel

    SpecimenDiameter or thickness /mmYield stress, fy/ MPaUltimate stress, fu / MPaYoung’s modulus, Es / MPa
    Rebar6.5338.3501.8210000
    H-shaped steel11351.5524.2300000
    下载: 导出CSV

    表  3  碳纤维布基本性能

    Table  3.   Properties of CFRP cloth

    Thickness, t /mmDensity, ρ / (g·cm−3)Elastic modulus, ECFRP / MPaTensile strength, σ / MPa
    0.111.82300004900
    下载: 导出CSV

    表  4  骨架曲线特征点实测值

    Table  4.   Measured value of characteristic points on skeleton curves

    SpecimenLoading directionXy/mmFy/kNXmax/mmFmax/kNXu/mmFu/kNYield displacement
    angle, θy / (10−3 rad)
    Peak displacement
    angle, θmax / (10−3 rad)
    Μ=θmax/θy
    CG IPositive13.68200.8949.55375.3062.15319.018.1328.473.50
    Negative13.48209.1245.55322.1868.34273.85
    CG IIPositive15.45267.7460.47397.1978.23337.619.2236.353.94
    Negative15.43274.1860.98400.3477.98340.29
    JG IPositive14.93277.0551.91445.0368.23378.288.9528.873.23
    Negative14.97289.0244.55392.0562.44333.24
    JG IIPositive17.47308.0360.11481.7580.21409.4910.2236.803.60
    Negative16.67313.3162.86479.1386.16407.26
    KJPositive11.94163.5533.16308.3837.32262.127.1617.742.48
    Negative11.98156.6326.10298.2137.21253.47
    下载: 导出CSV

    表  5  试件累积耗能

    Table  5.   Energy consumption values of the specimen

    SpecimenEt/(kN·mm)ρ
    CG I27966.51.71
    CG II37172.42.27
    JG I47332.32.89
    JG II57999.33.54
    KJ16373.91
    Notes: Et is the cumulative total energy consumption of the specimen, ρ is the ratio of the cumulative total energy consumption to the total KJ energy consumption.
    下载: 导出CSV
  • [1] Wang J F, Li B B. Cyclic testing of square CFST frames with ALC panel or block walls. J Constr Steel Res, 2017, 132: 264
    [2] Ye L P, Lu X Z, Zhao S C, et al. Seismic collapse resistance of RC frame structures—Case studies on seismic damages of several RC frame structures under extreme ground motion in Wenchuan earthquake. J Build Struct, 2009, 30(6): 67 doi: 10.14006/j.jzjgxb.2009.06.009

    叶列平, 陆新征, 赵世春, 等. 框架结构抗地震倒塌能力的研究——汶川地震极震区几个框架结构震害案例分析. 建筑结构学报, 2009, 30(6):67 doi: 10.14006/j.jzjgxb.2009.06.009
    [3] Wu C X, Xiong X P, Xu H, et al. Experimental study on the seismic performance of a new type assembled metal energy dissipation composite wallboard. J Vib Shock, 2020, 39(9): 159

    吴从晓, 熊晓鹏, 徐虎, 等. 新型装配式金属消能减震复合墙板抗震性能试验研究. 振动与冲击, 2020, 39(9):159
    [4] Zhou Y, Tong B, Chen Z Y, et al. Experimental study on seismic performance of damaged frame retrofitted by precast damping wall. J Build Struct, 2019, 40(10): 140 doi: 10.14006/j.jzjgxb.2017.0646

    周云, 童博, 陈章彦, 等. 预制减震墙板加固震损框架抗震性能试验研究. 建筑结构学报, 2019, 40(10):140 doi: 10.14006/j.jzjgxb.2017.0646
    [5] Guo Z X, Wang W, Hou W, et al. Experimental study on earthquake damaged frames retrofitted with prefabricated insulation sandwich walls. J Build Struct, 2015, 36(4): 42 doi: 10.14006/j.jzjgxb.2015.04.006

    郭子雄, 王伟, 侯炜, 等. 预制自保温钢筋混凝土墙板加固震损框架试验研究. 建筑结构学报, 2015, 36(4):42 doi: 10.14006/j.jzjgxb.2015.04.006
    [6] Pavese A, Bournas D A. Experimental assessment of the seismic performance of a prefabricated concrete structural wall system. Eng Struct, 2011, 33(6): 2049 doi: 10.1016/j.engstruct.2011.02.043
    [7] Wang R W, Cao W L, Yin F, et al. Experimental and numerical study regarding a fabricated CFST frame composite wall structure. J Constr Steel Res, 2019, 162: 105718 doi: 10.1016/j.jcsr.2019.105718
    [8] Matteis G D, Landolfo R. Diaphragm action of sandwich panels in pin-jointed steel structures: A seismic study. J Earthq Eng, 2000, 4(3): 251
    [9] Hashemi S J, Razzaghi J, Moghadam A S, et al. Cyclic testing of steel frames infilled with concrete sandwich panels. Archiv Civ Mech Eng, 2018, 18(2): 557 doi: 10.1016/j.acme.2017.10.007
    [10] Wang J F, Shen Q H, Li B B. Seismic behavior investigation on blind bolted CFST frames with precast SCWPs. Int J Steel Struct, 2018, 18(5): 1666 doi: 10.1007/s13296-018-0068-0
    [11] Wang S G, Zhuang L, Du D S, et al. Full scale shaking table tests on frame structure with new SIP filling wallboard. J Vib Shock, 2015, 34(18): 100 doi: 10.13465/j.cnki.jvs.2015.18.017

    王曙光, 庄丽, 杜东升, 等. 新型SIP填充墙板框架结构足尺振动台试验研究. 振动与冲击, 2015, 34(18):100 doi: 10.13465/j.cnki.jvs.2015.18.017
    [12] Cao W L, Liu Z B, Liu Y, et al. Experimental study on combining effect of assembled lightweight CFST frames with composite walls. J Build Struct, 2019, 40(8): 12

    曹万林, 刘子斌, 刘岩, 等. 装配式轻型钢管混凝土框架−复合墙共同工作性能试验研究. 建筑结构学报, 2019, 40(8):12
    [13] Jia S Z, Cao W L, Wang R W, et al. Experimental study on seismic performance of fabricated composite structure of thin slab with lightweight steel frame for low-rise housing. J Southeast Univ Nat Sci Ed, 2018, 48(2): 323 doi: 10.3969/j.issn.1001-0505.2018.02.021

    贾穗子, 曹万林, 王如伟, 等. 适于低层农房的装配式轻钢边框−薄墙板组合结构抗震性能试验研究. 东南大学学报(自然科学版), 2018, 48(2):323 doi: 10.3969/j.issn.1001-0505.2018.02.021
    [14] Wang R W, Cao W L, Yin F. Influence of installation depth of composite wall on seismic performance of assembly light steel frame–composite wall structures. Build Struct, 2021, 51(5): 54

    王如伟, 曹万林, 殷飞. 复合墙嵌入深度对装配式轻钢框架–复合墙结构抗震性能的影响. 建筑结构, 2021, 51(5):54
    [15] Li T, Galati N, Tumialan J G, et al. Analysis of unreinforced masonry concrete walls strengthened with glass fiber-reinforced polymer bars. ACI Struct J, 2005, 102(4): 569
    [16] Maddaloni G, Ludovico M D, Balsamo A, et al. Out-of-plane experimental behaviour of T-shaped full scale masonry wall strengthened with composite connections. Compos B Eng, 2016, 93: 328 doi: 10.1016/j.compositesb.2016.03.026
    [17] Dizhur D, Griffith M, Ingham J. Out-of-plane strengthening of unreinforced masonry walls using near surface mounted fibre reinforced polymer strips. Eng Struct, 2014, 59: 330 doi: 10.1016/j.engstruct.2013.10.026
    [18] Wang T W. Civil Engineering Structural Test. Wuhan: Wuhan University of Technology Press, 2006

    王天稳. 土木工程结构试验. 武汉: 武汉理工大学出版社, 2006
    [19] Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB50017—2017 Code for the Design of Steel Structures. Beijing: China Construction Industry Press, 2017

    中华人民共和国住房和城乡建设部. GB50017—2017钢结构设计规范. 北京: 中国建筑工业出版社, 2017
    [20] China Institute of Building Standard Design & Research. 19CJ85-1 Prefabricated Building Autoclaved Aerated Concrete Slab Enclosure System. Beijing: China Planning Press, 2019

    中国建筑标准设计研究院. 19CJ85-1装配式建筑蒸压加气混凝土板围护系统. 北京: 中国计划出版社, 2019
    [21] State Administration for Market Regulation, People’s Republic of China. GB/T228.1—2021 Tensile Testing of Metallic Materials: Part 1: Room Temperature Test Method. Beijing: China Standard Press, 2021

    中华人民共和国国家市场监督管理总局. GB/T228.1—2021金属材料拉伸试验: 第1部分: 室温试验方法. 北京: 中国标准出版社, 2021
    [22] General Administration of Quality Supervision, Inspection and Quarantine, People’s Republic of China. GB/T 11969—2020 Test Method for the Properties of Autoclaved Aerated Concrete. Beijing: China Construction Industry Press, 2020

    中华人民共和国国家质量监督检验检疫总局. GB/T 11969—2020 蒸压加气混凝土性能试验方法. 北京: 中国建筑工业出版, 2020
    [23] Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB50011—2010 Code for Seismic Design of Buildings. Beijing: China Construction Industry Press, 2010

    中华人民共和国住房和城乡建设部. GB50011—2010建筑抗震设计规范. 北京: 中国建筑工业出版社, 2010
    [24] Ministry of Housing and Urban-Rural Development, People’s Republic of China. JGJ/T101—2015 Seismic Test Procedure for Buildings. Beijing: China Construction Industry Press, 2015

    中华人民共和国住房和城乡建设部. JGJ/T101—2015建筑抗震试验规程. 北京: 中国建筑工业出版社, 2015
    [25] Qiu C X. Investigations of the Hysteresis Performance of the Steel Frames Infilled with Composite Panels [Dissertation]. Jinan: Shandong University, 2011

    邱灿星. 带复合墙板钢框架的滞回性能研究[学位论文]. 济南: 山东大学, 2011
    [26] Ministry of Housing and Urban-Rural Development, People’s Republic of China. JGJ 99—2015 Technical Specification for Steel Structure of Tall Building. Beijing: China Construction Industry Press, 2015

    中华人民共和国住房和城乡建设部. JGJ 99—2015高层民用建筑钢结构技术规程. 北京: 中国建筑工业出版社, 2015
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  89
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-26
  • 网络出版日期:  2022-10-04
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回