Experimental study of the synergistic seismic performance of steel frame filled with assembled lightweight concrete wall panels
-
摘要: 为了研究墙板与钢框架结构之间的协同抗震性能,对采用不同墙框连接节点的轻质混凝土拼装墙板填充钢框架进行了低周往复荷载试验。通过对比试件的承载力、滞回性能、刚度、耗能以及延性性能,探讨了轻质混凝土拼装墙板及其整体性对结构抗震性能的影响。结果表明:填充墙板钢框架结构的最终破坏形态以墙板挤压开裂,框架梁柱端部翼缘屈曲为主;轻质混凝土拼装墙板与钢框架协同工作,有利于提高结构整体的承载力和变形能力,减轻钢框架在平面内的屈曲破坏;与刚性节点相比,采用柔性节点连接墙板与钢框架对结构的承载力、层间刚度和耗能能力更为有利;增强拼装墙板的整体性,有助于提高结构整体刚度、变形和耗能能力。研究结果可为轻质混凝土拼装墙板填充钢框架结构的抗震设计提供参考。Abstract: In China, more and more buildings use assembled frame structures such as prefabricated autoclaved lightweight concrete wall panels used as the exterior wall. In structural design, these wall panels are usually considered non-structural components. However, in the event of an earthquake, the damage and collapse of these wall panels are likely to lead to casualties and economic losses. In addition to the damaged wall panels, the connection between the wall panels and the main structure is also an important factor affecting the seismic performance of the structure. The traditional connection between the wall panels and the frame can be easily damaged in an earthquake. The seismic performance of frame structures based on the new connections and the integrity of the lightweight, concrete-filled wall panels needs to be explored. To investigate the synergistic seismic performance of the wall panels and the steel frame structures, low cycle reciprocating load tests were carried out on the steel frames infilled with the lightweight concrete assembled wall panels. A new sliding joint was developed to connect the wall panels and the steel frames, and its performance was compared with the traditional hooking joints. The effect of lightweight concrete wall panels and their integrity on the seismic performance of the structures was investigated by analyzing the load-bearing capacity, hysteresis performance, stiffness, energy dissipation, and ductility of the specimens. The results show that extrusion cracking of the wall panel and buckling at the end of the frame columns are the ultimate damage modes of the filled wall panel steel frame structures. The synergy of the wall panels and the steel frame improves the load-bearing and deformation capacity of the structure as compared to a hollow frame. The structure with sliding joints is better in terms of load-bearing capacity, stiffness, and energy dissipation capacity. Enclosed by CFRP cloth, the enhanced integral wall panels can improve the ductility, stiffness, deformability, and energy dissipation capacity of the structure. It is suggested that the improved seismic performance of frame structures by the infilled wall panels should be considered in the design of prefabricated frame structures and that the wall panels and the frames should be connected by sliding joints. These experimental results can provide a reference for the seismic design of steel frame structures filled with lightweight concrete assembled wall panels.
-
表 1 试件主要参数
Table 1. Main parameters of specimens
Specimen No. Wall panel types Connection Reinforcing method CG I Vertical wall panels Hooking connector with beam CG II Vertical wall panels Sliding connector with beam JG I Reinforced vertical wall panels Hooking connector with beam Reinforced at both ends JG II Reinforced vertical wall panels Sliding connector with beam Reinforced at both ends KJ 表 2 钢材力学性能
Table 2. Mechanical properties of steel
Specimen Diameter or thickness /mm Yield stress, fy/ MPa Ultimate stress, fu / MPa Young’s modulus, Es / MPa Rebar 6.5 338.3 501.8 210000 H-shaped steel 11 351.5 524.2 300000 表 3 碳纤维布基本性能
Table 3. Properties of CFRP cloth
Thickness, t /mm Density, ρ / (g·cm−3) Elastic modulus, ECFRP / MPa Tensile strength, σ / MPa 0.11 1.8 230000 4900 表 4 骨架曲线特征点实测值
Table 4. Measured value of characteristic points on skeleton curves
Specimen Loading direction Xy/mm Fy/kN Xmax/mm Fmax/kN Xu/mm Fu/kN Yield displacement
angle, θy / (10−3 rad)Peak displacement
angle, θmax / (10−3 rad)Μ=θmax/θy CG I Positive 13.68 200.89 49.55 375.30 62.15 319.01 8.13 28.47 3.50 Negative 13.48 209.12 45.55 322.18 68.34 273.85 CG II Positive 15.45 267.74 60.47 397.19 78.23 337.61 9.22 36.35 3.94 Negative 15.43 274.18 60.98 400.34 77.98 340.29 JG I Positive 14.93 277.05 51.91 445.03 68.23 378.28 8.95 28.87 3.23 Negative 14.97 289.02 44.55 392.05 62.44 333.24 JG II Positive 17.47 308.03 60.11 481.75 80.21 409.49 10.22 36.80 3.60 Negative 16.67 313.31 62.86 479.13 86.16 407.26 KJ Positive 11.94 163.55 33.16 308.38 37.32 262.12 7.16 17.74 2.48 Negative 11.98 156.63 26.10 298.21 37.21 253.47 表 5 试件累积耗能
Table 5. Energy consumption values of the specimen
Specimen Et/(kN·mm) ρ CG I 27966.5 1.71 CG II 37172.4 2.27 JG I 47332.3 2.89 JG II 57999.3 3.54 KJ 16373.9 1 Notes: Et is the cumulative total energy consumption of the specimen, ρ is the ratio of the cumulative total energy consumption to the total KJ energy consumption. -
参考文献
[1] Wang J F, Li B B. Cyclic testing of square CFST frames with ALC panel or block walls. J Constr Steel Res, 2017, 132: 264 [2] Ye L P, Lu X Z, Zhao S C, et al. Seismic collapse resistance of RC frame structures—Case studies on seismic damages of several RC frame structures under extreme ground motion in Wenchuan earthquake. J Build Struct, 2009, 30(6): 67 doi: 10.14006/j.jzjgxb.2009.06.009叶列平, 陆新征, 赵世春, 等. 框架结构抗地震倒塌能力的研究——汶川地震极震区几个框架结构震害案例分析. 建筑结构学报, 2009, 30(6):67 doi: 10.14006/j.jzjgxb.2009.06.009 [3] Wu C X, Xiong X P, Xu H, et al. Experimental study on the seismic performance of a new type assembled metal energy dissipation composite wallboard. J Vib Shock, 2020, 39(9): 159吴从晓, 熊晓鹏, 徐虎, 等. 新型装配式金属消能减震复合墙板抗震性能试验研究. 振动与冲击, 2020, 39(9):159 [4] Zhou Y, Tong B, Chen Z Y, et al. Experimental study on seismic performance of damaged frame retrofitted by precast damping wall. J Build Struct, 2019, 40(10): 140 doi: 10.14006/j.jzjgxb.2017.0646周云, 童博, 陈章彦, 等. 预制减震墙板加固震损框架抗震性能试验研究. 建筑结构学报, 2019, 40(10):140 doi: 10.14006/j.jzjgxb.2017.0646 [5] Guo Z X, Wang W, Hou W, et al. Experimental study on earthquake damaged frames retrofitted with prefabricated insulation sandwich walls. J Build Struct, 2015, 36(4): 42 doi: 10.14006/j.jzjgxb.2015.04.006郭子雄, 王伟, 侯炜, 等. 预制自保温钢筋混凝土墙板加固震损框架试验研究. 建筑结构学报, 2015, 36(4):42 doi: 10.14006/j.jzjgxb.2015.04.006 [6] Pavese A, Bournas D A. Experimental assessment of the seismic performance of a prefabricated concrete structural wall system. Eng Struct, 2011, 33(6): 2049 doi: 10.1016/j.engstruct.2011.02.043 [7] Wang R W, Cao W L, Yin F, et al. Experimental and numerical study regarding a fabricated CFST frame composite wall structure. J Constr Steel Res, 2019, 162: 105718 doi: 10.1016/j.jcsr.2019.105718 [8] Matteis G D, Landolfo R. Diaphragm action of sandwich panels in pin-jointed steel structures: A seismic study. J Earthq Eng, 2000, 4(3): 251 [9] Hashemi S J, Razzaghi J, Moghadam A S, et al. Cyclic testing of steel frames infilled with concrete sandwich panels. Archiv Civ Mech Eng, 2018, 18(2): 557 doi: 10.1016/j.acme.2017.10.007 [10] Wang J F, Shen Q H, Li B B. Seismic behavior investigation on blind bolted CFST frames with precast SCWPs. Int J Steel Struct, 2018, 18(5): 1666 doi: 10.1007/s13296-018-0068-0 [11] Wang S G, Zhuang L, Du D S, et al. Full scale shaking table tests on frame structure with new SIP filling wallboard. J Vib Shock, 2015, 34(18): 100 doi: 10.13465/j.cnki.jvs.2015.18.017王曙光, 庄丽, 杜东升, 等. 新型SIP填充墙板框架结构足尺振动台试验研究. 振动与冲击, 2015, 34(18):100 doi: 10.13465/j.cnki.jvs.2015.18.017 [12] Cao W L, Liu Z B, Liu Y, et al. Experimental study on combining effect of assembled lightweight CFST frames with composite walls. J Build Struct, 2019, 40(8): 12曹万林, 刘子斌, 刘岩, 等. 装配式轻型钢管混凝土框架−复合墙共同工作性能试验研究. 建筑结构学报, 2019, 40(8):12 [13] Jia S Z, Cao W L, Wang R W, et al. Experimental study on seismic performance of fabricated composite structure of thin slab with lightweight steel frame for low-rise housing. J Southeast Univ Nat Sci Ed, 2018, 48(2): 323 doi: 10.3969/j.issn.1001-0505.2018.02.021贾穗子, 曹万林, 王如伟, 等. 适于低层农房的装配式轻钢边框−薄墙板组合结构抗震性能试验研究. 东南大学学报(自然科学版), 2018, 48(2):323 doi: 10.3969/j.issn.1001-0505.2018.02.021 [14] Wang R W, Cao W L, Yin F. Influence of installation depth of composite wall on seismic performance of assembly light steel frame–composite wall structures. Build Struct, 2021, 51(5): 54王如伟, 曹万林, 殷飞. 复合墙嵌入深度对装配式轻钢框架–复合墙结构抗震性能的影响. 建筑结构, 2021, 51(5):54 [15] Li T, Galati N, Tumialan J G, et al. Analysis of unreinforced masonry concrete walls strengthened with glass fiber-reinforced polymer bars. ACI Struct J, 2005, 102(4): 569 [16] Maddaloni G, Ludovico M D, Balsamo A, et al. Out-of-plane experimental behaviour of T-shaped full scale masonry wall strengthened with composite connections. Compos B Eng, 2016, 93: 328 doi: 10.1016/j.compositesb.2016.03.026 [17] Dizhur D, Griffith M, Ingham J. Out-of-plane strengthening of unreinforced masonry walls using near surface mounted fibre reinforced polymer strips. Eng Struct, 2014, 59: 330 doi: 10.1016/j.engstruct.2013.10.026 [18] Wang T W. Civil Engineering Structural Test. Wuhan: Wuhan University of Technology Press, 2006王天稳. 土木工程结构试验. 武汉: 武汉理工大学出版社, 2006 [19] Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB50017—2017 Code for the Design of Steel Structures. Beijing: China Construction Industry Press, 2017中华人民共和国住房和城乡建设部. GB50017—2017钢结构设计规范. 北京: 中国建筑工业出版社, 2017 [20] China Institute of Building Standard Design & Research. 19CJ85-1 Prefabricated Building Autoclaved Aerated Concrete Slab Enclosure System. Beijing: China Planning Press, 2019中国建筑标准设计研究院. 19CJ85-1装配式建筑蒸压加气混凝土板围护系统. 北京: 中国计划出版社, 2019 [21] State Administration for Market Regulation, People’s Republic of China. GB/T228.1—2021 Tensile Testing of Metallic Materials: Part 1: Room Temperature Test Method. Beijing: China Standard Press, 2021中华人民共和国国家市场监督管理总局. GB/T228.1—2021金属材料拉伸试验: 第1部分: 室温试验方法. 北京: 中国标准出版社, 2021 [22] General Administration of Quality Supervision, Inspection and Quarantine, People’s Republic of China. GB/T 11969—2020 Test Method for the Properties of Autoclaved Aerated Concrete. Beijing: China Construction Industry Press, 2020中华人民共和国国家质量监督检验检疫总局. GB/T 11969—2020 蒸压加气混凝土性能试验方法. 北京: 中国建筑工业出版, 2020 [23] Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB50011—2010 Code for Seismic Design of Buildings. Beijing: China Construction Industry Press, 2010中华人民共和国住房和城乡建设部. GB50011—2010建筑抗震设计规范. 北京: 中国建筑工业出版社, 2010 [24] Ministry of Housing and Urban-Rural Development, People’s Republic of China. JGJ/T101—2015 Seismic Test Procedure for Buildings. Beijing: China Construction Industry Press, 2015中华人民共和国住房和城乡建设部. JGJ/T101—2015建筑抗震试验规程. 北京: 中国建筑工业出版社, 2015 [25] Qiu C X. Investigations of the Hysteresis Performance of the Steel Frames Infilled with Composite Panels [Dissertation]. Jinan: Shandong University, 2011邱灿星. 带复合墙板钢框架的滞回性能研究[学位论文]. 济南: 山东大学, 2011 [26] Ministry of Housing and Urban-Rural Development, People’s Republic of China. JGJ 99—2015 Technical Specification for Steel Structure of Tall Building. Beijing: China Construction Industry Press, 2015中华人民共和国住房和城乡建设部. JGJ 99—2015高层民用建筑钢结构技术规程. 北京: 中国建筑工业出版社, 2015 -