• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高流动性改性镁渣基充填材料的性能

刘浪 谢磊 朱梦博 阮仕山 孙伟吉 邵成成

刘浪, 谢磊, 朱梦博, 阮仕山, 孙伟吉, 邵成成. 超高流动性改性镁渣基充填材料的性能[J]. 工程科学学报, 2023, 45(8): 1324-1334. doi: 10.13374/j.issn2095-9389.2022.06.06.001
引用本文: 刘浪, 谢磊, 朱梦博, 阮仕山, 孙伟吉, 邵成成. 超高流动性改性镁渣基充填材料的性能[J]. 工程科学学报, 2023, 45(8): 1324-1334. doi: 10.13374/j.issn2095-9389.2022.06.06.001
LIU Lang, XIE Lei, ZHU Meng-bo, RUAN Shi-shan, SUN Wei-ji, SHAO Cheng-cheng. Properties of ultrahigh fluidity modified magnesium slag-based filling materials[J]. Chinese Journal of Engineering, 2023, 45(8): 1324-1334. doi: 10.13374/j.issn2095-9389.2022.06.06.001
Citation: LIU Lang, XIE Lei, ZHU Meng-bo, RUAN Shi-shan, SUN Wei-ji, SHAO Cheng-cheng. Properties of ultrahigh fluidity modified magnesium slag-based filling materials[J]. Chinese Journal of Engineering, 2023, 45(8): 1324-1334. doi: 10.13374/j.issn2095-9389.2022.06.06.001

超高流动性改性镁渣基充填材料的性能

doi: 10.13374/j.issn2095-9389.2022.06.06.001
基金项目: 国家自然科学基金资助项目(52074212,51674188);陕西省自然科学基础研究计划资助项目(2015JQ5187);陕西省教育厅科研项目(15JK1466,19JK0543)
详细信息
    通讯作者:

    E-mail: liulang@xust.edu.cn

  • 中图分类号: TD803

Properties of ultrahigh fluidity modified magnesium slag-based filling materials

More Information
  • 摘要: 针对超远距离输送过程中,特殊管路布置等充填技术中堵管、爆管风险大,管道磨损严重等问题,采用改性镁渣(MMS)和粉煤灰(FA)在不同配比下制备超高流动性新型膏体充填材料(UH-MFPB),探究其早期强度、流动性以及流变特性,并建立流动性和流变参数的相关关系。研究结果表明:(1)UH-MFPB样品的单轴抗压强度随FA含量增加呈先增大后减小的趋势。当FA质量分数为20%时,样品的抗压强度最大,养护28 d可达到6.759 MPa,后期强度持续增加;(2)新鲜UH-MFPB料浆的坍落度为25.6~29.2 cm,扩展度为61~93.1 cm,具有很好的流动性;(3)新鲜UH-MFPB料浆的流变特性符合Herschel−Bulkley模型,流变参数(屈服应力、塑性黏度和触变性)随FA含量的增大而减小,且FA质量分数达到20%时,料浆出现剪切增稠的现象;(4)新鲜UH-MFPB料浆的流动性和流变参数满足二次多项式关系,呈现出负相关性。

     

  • 图  1  原材料粒径分布图. (a)改性镁渣粒径分布图; (b)粉煤灰粒径分布图

    Figure  1.  Particle size distribution of raw materials: (a) particle size distribution of modified magnesium slag; (b)particle size distribution of fly ash

    图  2  改性镁渣和粉煤灰XRD和SEM图. (a)改性镁渣XRD; (b)粉煤灰XRD; (c)改性镁渣SEM; (d)粉煤灰SEM

    Figure  2.  XRD and SEM images of modified magnesium slag and fly ash: (a) XRD of modified magnesium slag; (b) XRD of fly ash; (c) SEM of modified magnesium slag; (d) SEM of fly ash

    图  3  UH-MFPB样品的单轴抗压强度: (a)粉煤灰含量;(b)养护龄期

    Figure  3.  Uniaxial compressive strength of UH-MFPB samples: (a) fly ash content; (b) curing period

    图  4  新鲜UH-MFPB料浆的坍落度和扩展度

    Figure  4.  Slump and spread of fresh UH-MFPB slurry

    图  5  剪切速率对剪切应力的影响

    Figure  5.  Effect of shear rate on shear stress

    图  6  料浆H−B模型拟合图

    Figure  6.  H–B model fitting diagram of slurry

    图  7  剪切速率对塑性黏度的影响

    Figure  7.  Effect of shear rate on the plastic viscosity

    图  8  动态黏度Cross模型拟合图

    Figure  8.  Fitting diagram of the dynamic viscosity using the Cross viscosity model

    图  9  触变环示意图

    Figure  9.  Schematic of the thixotropic ring

    图  10  新鲜UH-MFPB料浆触变环的面积

    Figure  10.  Area of the thixotropic ring in fresh UH-MFPB

    图  11  屈服应力与坍落度的关系

    Figure  11.  Relationship between yield stress and slump

    图  12  塑性黏度与扩展度的关系

    Figure  12.  Relationship between plastic viscosity and spread

    表  1  改性镁渣与粉煤灰的化学组成(质量分数)

    Table  1.   Chemical composition of modified magnesium slag and fly ash(mass fraction) %

    Raw materialsSiO2CaOAl2O3MgOFe2O3P2O5SO3MnOTiO2
    MMS19.2141.180.823.782.590.030.020.060.06
    FA40.367.8116.220.9812.540.192.680.130.97
    下载: 导出CSV

    表  2  试验方案

    Table  2.   Experimental procedure

    NumberMass ratio of MMS:FAMass fraction/%Curing time/d
    FA010∶0743, 7, 28, 56
    FA109∶1
    FA208∶2
    FA307∶3
    FA406∶4
    FA505∶5
    下载: 导出CSV

    表  3  基于H−B模型下的新鲜UH-MFPB料浆流变参数

    Table  3.   Rheological parameters of fresh UH-MFPB slurry based on the H–B model

    MMS:FAH–B rheological equationYield stress/PaPlastic viscosity/(Pa·s)nCorrelation coefficient, R2Critical shear rate/s−1P/ (Pa∙ s−1)
    10∶0$ \tau {\text{ = }}53.71{\text{ + }}0.93{\gamma ^{0.94}} $53.710.930.940.99668447
    9∶1$ \tau {\text{ = }}49.65{\text{ + }}0.66{\gamma ^{0.94}} $49.650.660.950.98027721
    8∶2$ \tau {\text{ = }}27.56{\text{ + }}0.68{\gamma ^{1.08}} $27.560.681.080.9992847370
    7∶3$ \tau {\text{ = }}26.19{\text{ + }}0.39{\gamma ^{1.21}} $26.190.391.210.9982776907
    6∶4$ \tau {\text{ = }}24.14{\text{ + }}0.27{\gamma ^{1.26}} $24.140.271.260.9970656172
    5∶5$ \tau {\text{ = }}19.22{\text{ + }}0.22{\gamma ^{1.27}} $19.220.221.270.9981615144
    下载: 导出CSV

    表  4  新鲜UH-MFPB料浆的Cross黏度模型参数

    Table  4.   Cross viscosity model parameters of fresh UH-MFPB slurry

    MMS:FACross viscosity model equationInitial shear viscosity/(Pa·s)Infinite shear viscosity/(Pa·s)Coefficient of
    viscosity, Kc
    Flow
    index, nc
    Correlation
    coefficient, R2
    SE/%
    10∶0$\mu {\text{ = } }{\mu _\infty }{\text{ + } }\dfrac{ { {\mu _0}-}{\mu _\infty } } { {\left[ {1{\text{ + } }{ {\left( { {K_{\text{c} } }\gamma } \right)}^{ {n_c} } } } \right]} }$216.130.763.351.040.99764.77
    9∶186.640.890.961.270.99557.79
    8∶235.961.230.671.400.990111.66
    7∶331.081.220.621.440.991910.99
    6∶432.031.030.811.310.99627.41
    5∶528.200.791.061.170.99518.12
    下载: 导出CSV
  • [1] Hu B N, Liu P L, Cui F, et al. Review and development status of backfill coal mining technology in China. Coal Sci Technol, 2020, 48(9): 39

    胡炳南, 刘鹏亮, 崔锋, 等. 我国充填采煤技术回顾及发展现状. 煤炭科学技术, 2020, 48(9):39
    [2] Liu L, Fang Z Y, Zhang B, et al. Development history and basic categories of mine backfill technology. Met Mine, 2021(3): 1

    刘浪, 方治余, 张波, 等. 矿山充填技术的演进历程与基本类别. 金属矿山, 2021(3):1
    [3] Wang M, Liu P, Shang S Y, et al. Numerical and experimental studies on the cooling performance of backfill containing phase change materials. Build Environ, 2022, 218: 109155 doi: 10.1016/j.buildenv.2022.109155
    [4] Zhu M B, Cheng J Y, Zhang Z. Quality control of microseismic P-phase arrival picks in coal mine based on machine learning. Comput Geosci, 2021, 156: 104862 doi: 10.1016/j.cageo.2021.104862
    [5] Zhu M B, Liu L, Wang S M, et al. Short- and long-walls backfilling pillarless coal mining method. J Min Safety Eng, https://doi.org/10.13545/j.cnki.jmse.2021.0580

    朱梦博, 刘浪, 王双明, 等. 短−长壁工作面充填无煤柱开采方法研究. 采矿与安全工程学报, https://doi.org/10.13545/j.cnki.jmse.2021.0580
    [6] Yang Z Q, Chen D X, Gao Q, et al. Key technologies in long-distance pipeline transportation of coarse aggregate coarse aggregate. J Guangxi Univ Nat Sci Ed, 2016, 41(4): 1306

    杨志强, 陈得信, 高谦, 等. 粗骨料充填料浆长距离管道输送关键技术. 广西大学学报(自然科学版), 2016, 41(4):1306
    [7] Liu F T, Ding J F, Chen G P, et al. Study on the high-density gravity-flow backfilling technology of deep-well long-distance with large time line. Met Mine, 2014(2): 40

    刘丰韬, 丁剑锋, 陈国平, 等. 深井长距离大倍线高浓度自流充填技术研究. 金属矿山, 2014(2):40
    [8] Yang T Y, Qiao D P, Wang J, et al. Numerical simulation and new model of pipeline transportation resistance of waste rock- aeolian sand high concentration slurry. Chin J Nonferrous Met, 2021, 31(1): 234

    杨天雨, 乔登攀, 王俊, 等. 废石−风砂高浓度料浆管道输送数值模拟及管输阻力新模型. 中国有色金属学报, 2021, 31(1):234
    [9] Zhang L F, Wu A X, Wang H J. Effects and mechanism of pumping agent on rheological properties of highly muddy paste. Chin J Eng, 2018, 40(8): 918

    张连富, 吴爱祥, 王洪江. 泵送剂对高含泥膏体流变特性影响及机理. 工程科学学报, 2018, 40(8):918
    [10] Sheng J, Wan W, Zheng B K, et al. Downward pumping filling of coarse aggregate technology under long distance and complex conditions. Min Res Dev, 2022, 42(3): 140

    盛佳, 万文, 郑伯坤, 等. 粗骨料长距离复杂工况下向泵送充填技术与应用. 矿业研究与开发, 2022, 42(3):140
    [11] Luo T, Wang Q, Zhuang S Y. Effects of ultra-fine ground granulated blast-furnace slag on initial setting time, fluidity and rheological properties of cement pastes. Powder Technol, 2019, 345: 54 doi: 10.1016/j.powtec.2018.12.094
    [12] Chen J, Liang Y Z, Wang J, et al. Research on transport characteristic of high sand content filling material. Bull Chin Ceram Soc, 2020, 39(1): 194

    陈杰, 梁杨芝, 王俊, 等. 高沙充填材料的输送性能研究. 硅酸盐通报, 2020, 39(1):194
    [13] Lü C, Liu J P, Tian Y, et al. Influence of hydrophobic minerals on fluidity and strength of high-strength self-compacting concrete. J Southeast Univ Nat Sci Ed, 2022, 52(2): 263

    吕晨, 刘加平, 田义, 等. 疏水矿物对高强自密实混凝土流动性能及强度的影响. 东南大学学报(自然科学版), 2022, 52(2):263
    [14] Xue Z L, Zhang Y Z, Gan D Q, et al. Effect of pumping agent on fluidity of filling slurry and mechanical properties of filling body. Met Mine, 2020(11): 25

    薛振林, 张友志, 甘德清, 等. 泵送剂掺量对充填料浆流动性能及充填体力学性能的影响. 金属矿山, 2020(11):25
    [15] Liu L, Ruan S S, Qi C C, et al. Co-disposal of magnesium slag and high-calcium fly ash as cementitious materials in backfill. J Clean Prod, 2021, 279: 123684 doi: 10.1016/j.jclepro.2020.123684
    [16] Liu L, Ruan S S, Fang Z Y, et al. Modification of magnesium slag and its application in the field of mine filling. J China Coal Soc, 2021, 46(12): 3833

    刘浪, 阮仕山, 方治余, 等. 镁渣的改性及其在矿山充填领域的应用探索. 煤炭学报, 2021, 46(12):3833
    [17] Dai X D, Aydin S, Yardimci M Y, et al. Rheology, early-age hydration and microstructure of alkali-activated GGBFS-Fly ash-limestone mixtures. Cem Concr Compos, 2021, 124: 104244 doi: 10.1016/j.cemconcomp.2021.104244
    [18] Xie Y J, Chen X B, Ma K L, et al. Effects of limestone powder on rheological properties of cement-flyash mortar. J Railw Sci Eng, 2015, 12(1): 59

    谢友均, 陈小波, 马昆林, 等. 石灰石粉对水泥-粉煤灰砂浆流变行为影响的研究. 铁道科学与工程学报, 2015, 12(1):59
    [19] Li J, Zhang S Q, Wang Q, et al. Feasibility of using fly ash-slag-based binder for mine backfilling and its associated leaching risks. J Hazard Mater, 2020, 400: 123191 doi: 10.1016/j.jhazmat.2020.123191
    [20] Liu L, Fang Z Y, Wang M, et al. Experimental and numerical study on rheological properties of ice-containing cement paste backfill slurry. Powder Technol, 2020, 370: 206 doi: 10.1016/j.powtec.2020.05.024
    [21] Zhang X, Zhang L. Application of rheological theory in cement-based materials. Fly Ash Compr Util, 2013, 26(4): 9

    张雄, 张蕾. 流变学理论在水泥基材料中的应用. 粉煤灰综合利用, 2013, 26(4):9
    [22] Mahboub K E, Mbonimpa M, Belem T, et al. Rheological characterization of cemented paste backfills containing superabsorbent polymers (SAPs). Constr Build Mater, 2022, 317: 125863 doi: 10.1016/j.conbuildmat.2021.125863
    [23] Chen K Y, Wu D Z, Hu J T. Advances in the reaction mechanism and preparation parameters of geopolymer binder material based on components. Bull Chin Ceram Soc, 2020, 39(7): 2033

    陈柯宇, 吴大志, 胡俊涛. 基于组分的地聚合物胶凝材料反应机理及其制备参数的研究进展. 硅酸盐通报, 2020, 39(7):2033
    [24] Ouattara D, Mbonimpa M, Yahia A, et al. Assessment of rheological parameters of high density cemented paste backfill mixtures incorporating superplasticizers. Constr Build Mater, 2018, 190: 294 doi: 10.1016/j.conbuildmat.2018.09.066
    [25] Nehdi M, Rahman M A. Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction. Cem Concr Res, 2004, 34(11): 1993 doi: 10.1016/j.cemconres.2004.02.020
    [26] Chen Y J, Han F L, Luo Z. Solidification/stabilization of heavy mental Cu and Cd in waste acid residue by magnesium slag. Inorg Chem Ind, 2015, 47(7): 48

    (陈玉洁, 韩凤兰, 罗钊. 镁渣固化/稳定污酸渣中重金属铜和镉. 无机盐工业, 2015, 47(7):48
    [27] Cui Z Z, Yang W W, Zhang D P. Experimental study on pozzolanic activity of magnesium slag. Ningxia Eng Technol, 2007, 6(2): 160

    崔自治, 杨维武, 张冬平. 镁渣火山灰活性试验研究. 宁夏工程技术, 2007, 6(2):160
    [28] Guo Z G, Jiang T, Zhang J, et al. Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume. Constr Build Mater, 2020, 231: 117115 doi: 10.1016/j.conbuildmat.2019.117115
    [29] Li X, Yan P Y. Influence of fly ash content on alkalinity of pore solution and microstructure of cement pastes. J Build Mater, 2010, 13(6): 787

    李响, 阎培渝. 粉煤灰掺量对水泥孔溶液碱度与微观结构的影响. 建筑材料学报, 2010, 13(6):787
    [30] Zhao J H, Liu L. Research into rheological properties of backfill paste based on the slump test. J Xian Univ Archit &Technol Nat Sci Ed, 2015, 47(2): 192

    赵建会, 刘浪. 基于坍落度的充填膏体流变特性研究. 西安建筑科技大学学报(自然科学版), 2015, 47(2):192
    [31] Shen H M, Wu A X, Jiang L C, et al. Small cylindrical slump test for unclassified tailings paste. J Central South Univ Sci Technol, 2016, 47(1): 204

    沈慧明, 吴爱祥, 姜立春, 等. 全尾砂膏体小型圆柱塌落度检测. 中南大学学报(自然科学版), 2016, 47(1):204
    [32] Panchal S, Deb D, Sreenivas T. Variability in rheology of cemented paste backfill with hydration age, binder and superplasticizer dosages. Adv Powder Technol, 2018, 29(9): 2211 doi: 10.1016/j.apt.2018.06.005
    [33] Wang S Y, Wu A X, Ruan Z E, et al. Rheological properties of paste slurry and influence factors based on pipe loop test. J Central South Univ Sci Technol, 2018, 49(10): 2519

    王少勇, 吴爱祥, 阮竹恩, 等. 基于环管实验的膏体流变特性及影响因素. 中南大学学报(自然科学版), 2018, 49(10):2519
    [34] Xiao J, Wang D F, Zuo S H, et al. Shear protocols of cement paste based on steady rheological test. Bull Chin Ceram Soc, 2017, 36(7): 2387

    肖佳, 王大富, 左胜浩, 等. 基于稳态流变测试的水泥浆体剪切模式研究. 硅酸盐通报, 2017, 36(7):2387
    [35] Wu A X, Ruan Z E, Wang J D. Rheological behavior of paste in metal mines. Int J Miner Metall Mater, 2022, 29(4): 717 doi: 10.1007/s12613-022-2423-6
    [36] Jiang D B, Li X G, Lv Y, et al. Utilization of limestone powder and fly ash in blended cement: rheology, strength and hydration characteristics. Constr Build Mater, 2020, 232: 117228 doi: 10.1016/j.conbuildmat.2019.117228
    [37] Xie Y J, Chen X B, Ma K L, et al. Effects of limestone powder on shear thinning and shear thickening of cement-fly ash paste. J Build Mater, 2015, 18(5): 824

    谢友均, 陈小波, 马昆林, 等. 石灰石粉对水泥-粉煤灰浆体剪切变稀和剪切增稠的影响. 建筑材料学报, 2015, 18(5):824
    [38] Grzeszczyk S, Lipowski G. Effect of content and particle size distribution of high-calcium fly ash on the rheological properties of cement pastes. Cem Concr Res, 1997, 27(6): 907 doi: 10.1016/S0008-8846(97)00073-2
    [39] Ma K L, Long G C, Xie Y J, et al. Factors on affecting plastic viscosity of cement–fly ash–limestone compound pastes. J Chin Ceram Soc, 2013, 41(11): 1481

    马昆林, 龙广成, 谢友均, 等. 水泥–粉煤灰–石灰石粉浆体塑性黏度的影响因素. 硅酸盐学报, 2013, 41(11):1481
    [40] Hoffman R L. Explanations for the cause of shear thickening in concentrated colloidal suspensions. J Rheol, 1998, 42(1): 111 doi: 10.1122/1.550884
    [41] Egres R G, Nettesheim F, Wagner N J. Rheo-SANS investigation of acicular-precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J Rheol, 2006, 50(5): 685 doi: 10.1122/1.2213245
    [42] Hoffman R L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. observation of a flow instability. Trans Soc Rheol, 1972, 16(1): 155
    [43] Brady J F, Bossis G. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J Fluid Mech, 1985, 155: 105 doi: 10.1017/S0022112085001732
    [44] Xie Y J, Chen X B, Ma K L, et al. Effects of fly ash on shearing thinning and thickening of cement paste. J Chin Ceram Soc, 2015, 43(8): 1040

    谢友均, 陈小波, 马昆林, 等. 粉煤灰对水泥浆体的剪切变稀和剪切增稠作用. 硅酸盐学报, 2015, 43(8):1040
    [45] Ma K L, Feng J, Long G C, et al. Rheological characteristic and its mechanism of cement-fly ash paste. J Railw Sci Eng, 2017, 14(3): 465

    马昆林, 冯金, 龙广成, 等. 水泥−粉煤灰浆体流变特性及其机理研究. 铁道科学与工程学报, 2017, 14(3):465
    [46] Wang Q, Cui X Y, Wang J, et al. Effect of fly ash on rheological properties of graphene oxide cement paste. Constr Build Mater, 2017, 138: 35 doi: 10.1016/j.conbuildmat.2017.01.126
    [47] Liu Y, Li M Y, Yan P Y. Effect of mineral admixtures on rheological properties and thixotropy of binder paste. J Chin Ceram Soc, 2019, 47(5): 594

    刘宇, 黎梦圆, 阎培渝. 矿物掺合料对胶凝材料浆体流变性能和触变性的影响. 硅酸盐学报, 2019, 47(5):594
    [48] Jiang H Q, Fall M, Yilmaz E, et al. Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy. Powder Technol, 2020, 372: 258 doi: 10.1016/j.powtec.2020.06.009
    [49] Liu L. Research on Proportion Optimization and Flow Characteristic of Backfill Paste in Mine Sites [Dissertation]. Changsha: Central South University, 2013

    刘浪. 矿山充填膏体配比优化与流动特性研究[学位论文]. 长沙: 中南大学, 2013
    [50] Tang X S, Cai Y B, Wen J B, et al. Correlation between slump flow and rheological parameters of compound pastes with high volume of ground slag. J Chin Ceram Soc, 2014, 42(5): 648

    唐修生, 蔡跃波, 温金保, 等. 磨细矿渣复合浆体流变参数与流动度的相关性. 硅酸盐学报, 2014, 42(5):648
    [51] Celik F, Canakci H. An investigation of rheological properties of cement-based grout mixed with rice husk ash (RHA). Constr Build Mater, 2015, 91: 187 doi: 10.1016/j.conbuildmat.2015.05.025
    [52] Lachemi M, Hossain K M A, Lambros V, et al. Performance of new viscosity modifying admixtures in enhancing the rheological properties of cement paste. Cem Concr Res, 2004, 34(2): 185 doi: 10.1016/S0008-8846(03)00233-3
    [53] Li H Y. Study on Time-dependent Changes in Flow Properties of Cemented Coal Gangue Backfill Materials [Dissertation]. Taiyuan: Taiyuan University of Technology, 2019

    李化运. 煤矸石胶结充填材料流动性能经时变化研究[学位论文]. 太原: 太原理工大学, 2019
    [54] Nan X L, Ji J R, Wei D B, et al. Influence of limestone powder on rheological properties of ultrahigh strength cement-based materials. J Chongqing Jiaotong Univ Nat Sci, 2022, 41(5): 100

    南雪丽, 姬建瑞, 魏定邦, 等. 石灰石粉对超高强水泥基材料流变特性的影响. 重庆交通大学学报(自然科学版), 2022, 41(5):100
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  110
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 网络出版日期:  2022-08-04
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回