-
摘要: 针对超远距离输送过程中,特殊管路布置等充填技术中堵管、爆管风险大,管道磨损严重等问题,采用改性镁渣(MMS)和粉煤灰(FA)在不同配比下制备超高流动性新型膏体充填材料(UH-MFPB),探究其早期强度、流动性以及流变特性,并建立流动性和流变参数的相关关系。研究结果表明:(1)UH-MFPB样品的单轴抗压强度随FA含量增加呈先增大后减小的趋势。当FA质量分数为20%时,样品的抗压强度最大,养护28 d可达到6.759 MPa,后期强度持续增加;(2)新鲜UH-MFPB料浆的坍落度为25.6~29.2 cm,扩展度为61~93.1 cm,具有很好的流动性;(3)新鲜UH-MFPB料浆的流变特性符合Herschel−Bulkley模型,流变参数(屈服应力、塑性黏度和触变性)随FA含量的增大而减小,且FA质量分数达到20%时,料浆出现剪切增稠的现象;(4)新鲜UH-MFPB料浆的流动性和流变参数满足二次多项式关系,呈现出负相关性。Abstract: With its continuous application and promotion, filling technology, such as an ultra-long distance and special pipeline arrangement, faces an increasing demand, and the demand for the fluidity of filling material is also rising. Aiming at the large risk of blocking pipes and tubes in filling technology, the serious wear of pipelines, etc., and using modified magnesium slag (MMS) and fly ash (FA) to prepare high liquidity under different ratios of a new type of paste filling material (UH-MFPB), this paper probes this material’s early strength, liquidity, and rheological properties, and establishes the relationship between liquidity and rheological parameters. First, MMS and FA samples were prepared at different ratios of certain concentrations and cured for 3, 7, 28, and 56 days to measure their uniaxial compressive strength. The uniaxial compressive strength of a UH-MFPB sample increases first and then decreases with increasing FA content, and gradually increases with curing age. When FA content is 20%, the compressive strength of the sample reaches the maximum. At 3, 7, 28, and 56 days, the intensity was 1.335, 2.161, 6.759, and 12.104 MPa, respectively. Then, the slump and spread of fresh UH-MFPB slurry were measured. They increased with FA content, with a slump of 25.6–29.2 cm and a spread of 61–93.1 cm, showing good fluidity. Then, the rheological properties of fresh UH-MFPB slurry were measured in accordance with the Herschel–Bulkley model, and the relationship between shear stress and plastic viscosity and the shear rate was discussed, as well as the effect of FA content on rheological parameters and mechanisms. The shear stress is found to increase with the shear rate, and the viscosity decreases exponentially and then slowly with increasing shear rate. Rheological parameters (yield stress, plastic viscosity, and thixotropy) decrease with increasing FA content, and the slurry undergoes shear thickening when FA content reaches 20%. The Cross viscosity model was used to fit the viscosity curve of fresh slurry. Finally, the correlation between the fluidity and rheological parameters of fresh UH-MFPB slurry was discussed, and the yield stress was found to correlate negatively with the slump, plastic viscosity, and expansion, which were quadratic polynomials. Considering all factors, when FA content is between 10% and 30%, UH-MFPB slurry has ultra-high fluidity and high strength, which can play a good role in filling slurry transport.
-
表 1 改性镁渣与粉煤灰的化学组成(质量分数)
Table 1. Chemical composition of modified magnesium slag and fly ash(mass fraction)
% Raw materials SiO2 CaO Al2O3 MgO Fe2O3 P2O5 SO3 MnO TiO2 MMS 19.21 41.18 0.82 3.78 2.59 0.03 0.02 0.06 0.06 FA 40.36 7.81 16.22 0.98 12.54 0.19 2.68 0.13 0.97 表 2 试验方案
Table 2. Experimental procedure
Number Mass ratio of MMS:FA Mass fraction/% Curing time/d FA0 10∶0 74 3, 7, 28, 56 FA10 9∶1 FA20 8∶2 FA30 7∶3 FA40 6∶4 FA50 5∶5 表 3 基于H−B模型下的新鲜UH-MFPB料浆流变参数
Table 3. Rheological parameters of fresh UH-MFPB slurry based on the H–B model
MMS:FA H–B rheological equation Yield stress/Pa Plastic viscosity/(Pa·s) n Correlation coefficient, R2 Critical shear rate/s−1 △P/ (Pa∙ s−1) 10∶0 $ \tau {\text{ = }}53.71{\text{ + }}0.93{\gamma ^{0.94}} $ 53.71 0.93 0.94 0.9966 8447 9∶1 $ \tau {\text{ = }}49.65{\text{ + }}0.66{\gamma ^{0.94}} $ 49.65 0.66 0.95 0.9802 7721 8∶2 $ \tau {\text{ = }}27.56{\text{ + }}0.68{\gamma ^{1.08}} $ 27.56 0.68 1.08 0.9992 84 7370 7∶3 $ \tau {\text{ = }}26.19{\text{ + }}0.39{\gamma ^{1.21}} $ 26.19 0.39 1.21 0.9982 77 6907 6∶4 $ \tau {\text{ = }}24.14{\text{ + }}0.27{\gamma ^{1.26}} $ 24.14 0.27 1.26 0.9970 65 6172 5∶5 $ \tau {\text{ = }}19.22{\text{ + }}0.22{\gamma ^{1.27}} $ 19.22 0.22 1.27 0.9981 61 5144 表 4 新鲜UH-MFPB料浆的Cross黏度模型参数
Table 4. Cross viscosity model parameters of fresh UH-MFPB slurry
MMS:FA Cross viscosity model equation Initial shear viscosity/(Pa·s) Infinite shear viscosity/(Pa·s) Coefficient of
viscosity, KcFlow
index, ncCorrelation
coefficient, R2SE/% 10∶0 $\mu {\text{ = } }{\mu _\infty }{\text{ + } }\dfrac{ { {\mu _0}-}{\mu _\infty } } { {\left[ {1{\text{ + } }{ {\left( { {K_{\text{c} } }\gamma } \right)}^{ {n_c} } } } \right]} }$ 216.13 0.76 3.35 1.04 0.9976 4.77 9∶1 86.64 0.89 0.96 1.27 0.9955 7.79 8∶2 35.96 1.23 0.67 1.40 0.9901 11.66 7∶3 31.08 1.22 0.62 1.44 0.9919 10.99 6∶4 32.03 1.03 0.81 1.31 0.9962 7.41 5∶5 28.20 0.79 1.06 1.17 0.9951 8.12 -
参考文献
[1] Hu B N, Liu P L, Cui F, et al. Review and development status of backfill coal mining technology in China. Coal Sci Technol, 2020, 48(9): 39胡炳南, 刘鹏亮, 崔锋, 等. 我国充填采煤技术回顾及发展现状. 煤炭科学技术, 2020, 48(9):39 [2] Liu L, Fang Z Y, Zhang B, et al. Development history and basic categories of mine backfill technology. Met Mine, 2021(3): 1刘浪, 方治余, 张波, 等. 矿山充填技术的演进历程与基本类别. 金属矿山, 2021(3):1 [3] Wang M, Liu P, Shang S Y, et al. Numerical and experimental studies on the cooling performance of backfill containing phase change materials. Build Environ, 2022, 218: 109155 doi: 10.1016/j.buildenv.2022.109155 [4] Zhu M B, Cheng J Y, Zhang Z. Quality control of microseismic P-phase arrival picks in coal mine based on machine learning. Comput Geosci, 2021, 156: 104862 doi: 10.1016/j.cageo.2021.104862 [5] Zhu M B, Liu L, Wang S M, et al. Short- and long-walls backfilling pillarless coal mining method. J Min Safety Eng, https://doi.org/10.13545/j.cnki.jmse.2021.0580朱梦博, 刘浪, 王双明, 等. 短−长壁工作面充填无煤柱开采方法研究. 采矿与安全工程学报, https://doi.org/10.13545/j.cnki.jmse.2021.0580 [6] Yang Z Q, Chen D X, Gao Q, et al. Key technologies in long-distance pipeline transportation of coarse aggregate coarse aggregate. J Guangxi Univ Nat Sci Ed, 2016, 41(4): 1306杨志强, 陈得信, 高谦, 等. 粗骨料充填料浆长距离管道输送关键技术. 广西大学学报(自然科学版), 2016, 41(4):1306 [7] Liu F T, Ding J F, Chen G P, et al. Study on the high-density gravity-flow backfilling technology of deep-well long-distance with large time line. Met Mine, 2014(2): 40刘丰韬, 丁剑锋, 陈国平, 等. 深井长距离大倍线高浓度自流充填技术研究. 金属矿山, 2014(2):40 [8] Yang T Y, Qiao D P, Wang J, et al. Numerical simulation and new model of pipeline transportation resistance of waste rock- aeolian sand high concentration slurry. Chin J Nonferrous Met, 2021, 31(1): 234杨天雨, 乔登攀, 王俊, 等. 废石−风砂高浓度料浆管道输送数值模拟及管输阻力新模型. 中国有色金属学报, 2021, 31(1):234 [9] Zhang L F, Wu A X, Wang H J. Effects and mechanism of pumping agent on rheological properties of highly muddy paste. Chin J Eng, 2018, 40(8): 918张连富, 吴爱祥, 王洪江. 泵送剂对高含泥膏体流变特性影响及机理. 工程科学学报, 2018, 40(8):918 [10] Sheng J, Wan W, Zheng B K, et al. Downward pumping filling of coarse aggregate technology under long distance and complex conditions. Min Res Dev, 2022, 42(3): 140盛佳, 万文, 郑伯坤, 等. 粗骨料长距离复杂工况下向泵送充填技术与应用. 矿业研究与开发, 2022, 42(3):140 [11] Luo T, Wang Q, Zhuang S Y. Effects of ultra-fine ground granulated blast-furnace slag on initial setting time, fluidity and rheological properties of cement pastes. Powder Technol, 2019, 345: 54 doi: 10.1016/j.powtec.2018.12.094 [12] Chen J, Liang Y Z, Wang J, et al. Research on transport characteristic of high sand content filling material. Bull Chin Ceram Soc, 2020, 39(1): 194陈杰, 梁杨芝, 王俊, 等. 高沙充填材料的输送性能研究. 硅酸盐通报, 2020, 39(1):194 [13] Lü C, Liu J P, Tian Y, et al. Influence of hydrophobic minerals on fluidity and strength of high-strength self-compacting concrete. J Southeast Univ Nat Sci Ed, 2022, 52(2): 263吕晨, 刘加平, 田义, 等. 疏水矿物对高强自密实混凝土流动性能及强度的影响. 东南大学学报(自然科学版), 2022, 52(2):263 [14] Xue Z L, Zhang Y Z, Gan D Q, et al. Effect of pumping agent on fluidity of filling slurry and mechanical properties of filling body. Met Mine, 2020(11): 25薛振林, 张友志, 甘德清, 等. 泵送剂掺量对充填料浆流动性能及充填体力学性能的影响. 金属矿山, 2020(11):25 [15] Liu L, Ruan S S, Qi C C, et al. Co-disposal of magnesium slag and high-calcium fly ash as cementitious materials in backfill. J Clean Prod, 2021, 279: 123684 doi: 10.1016/j.jclepro.2020.123684 [16] Liu L, Ruan S S, Fang Z Y, et al. Modification of magnesium slag and its application in the field of mine filling. J China Coal Soc, 2021, 46(12): 3833刘浪, 阮仕山, 方治余, 等. 镁渣的改性及其在矿山充填领域的应用探索. 煤炭学报, 2021, 46(12):3833 [17] Dai X D, Aydin S, Yardimci M Y, et al. Rheology, early-age hydration and microstructure of alkali-activated GGBFS-Fly ash-limestone mixtures. Cem Concr Compos, 2021, 124: 104244 doi: 10.1016/j.cemconcomp.2021.104244 [18] Xie Y J, Chen X B, Ma K L, et al. Effects of limestone powder on rheological properties of cement-flyash mortar. J Railw Sci Eng, 2015, 12(1): 59谢友均, 陈小波, 马昆林, 等. 石灰石粉对水泥-粉煤灰砂浆流变行为影响的研究. 铁道科学与工程学报, 2015, 12(1):59 [19] Li J, Zhang S Q, Wang Q, et al. Feasibility of using fly ash-slag-based binder for mine backfilling and its associated leaching risks. J Hazard Mater, 2020, 400: 123191 doi: 10.1016/j.jhazmat.2020.123191 [20] Liu L, Fang Z Y, Wang M, et al. Experimental and numerical study on rheological properties of ice-containing cement paste backfill slurry. Powder Technol, 2020, 370: 206 doi: 10.1016/j.powtec.2020.05.024 [21] Zhang X, Zhang L. Application of rheological theory in cement-based materials. Fly Ash Compr Util, 2013, 26(4): 9张雄, 张蕾. 流变学理论在水泥基材料中的应用. 粉煤灰综合利用, 2013, 26(4):9 [22] Mahboub K E, Mbonimpa M, Belem T, et al. Rheological characterization of cemented paste backfills containing superabsorbent polymers (SAPs). Constr Build Mater, 2022, 317: 125863 doi: 10.1016/j.conbuildmat.2021.125863 [23] Chen K Y, Wu D Z, Hu J T. Advances in the reaction mechanism and preparation parameters of geopolymer binder material based on components. Bull Chin Ceram Soc, 2020, 39(7): 2033陈柯宇, 吴大志, 胡俊涛. 基于组分的地聚合物胶凝材料反应机理及其制备参数的研究进展. 硅酸盐通报, 2020, 39(7):2033 [24] Ouattara D, Mbonimpa M, Yahia A, et al. Assessment of rheological parameters of high density cemented paste backfill mixtures incorporating superplasticizers. Constr Build Mater, 2018, 190: 294 doi: 10.1016/j.conbuildmat.2018.09.066 [25] Nehdi M, Rahman M A. Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction. Cem Concr Res, 2004, 34(11): 1993 doi: 10.1016/j.cemconres.2004.02.020 [26] Chen Y J, Han F L, Luo Z. Solidification/stabilization of heavy mental Cu and Cd in waste acid residue by magnesium slag. Inorg Chem Ind, 2015, 47(7): 48(陈玉洁, 韩凤兰, 罗钊. 镁渣固化/稳定污酸渣中重金属铜和镉. 无机盐工业, 2015, 47(7):48 [27] Cui Z Z, Yang W W, Zhang D P. Experimental study on pozzolanic activity of magnesium slag. Ningxia Eng Technol, 2007, 6(2): 160崔自治, 杨维武, 张冬平. 镁渣火山灰活性试验研究. 宁夏工程技术, 2007, 6(2):160 [28] Guo Z G, Jiang T, Zhang J, et al. Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume. Constr Build Mater, 2020, 231: 117115 doi: 10.1016/j.conbuildmat.2019.117115 [29] Li X, Yan P Y. Influence of fly ash content on alkalinity of pore solution and microstructure of cement pastes. J Build Mater, 2010, 13(6): 787李响, 阎培渝. 粉煤灰掺量对水泥孔溶液碱度与微观结构的影响. 建筑材料学报, 2010, 13(6):787 [30] Zhao J H, Liu L. Research into rheological properties of backfill paste based on the slump test. J Xi’an Univ Archit &Technol Nat Sci Ed, 2015, 47(2): 192赵建会, 刘浪. 基于坍落度的充填膏体流变特性研究. 西安建筑科技大学学报(自然科学版), 2015, 47(2):192 [31] Shen H M, Wu A X, Jiang L C, et al. Small cylindrical slump test for unclassified tailings paste. J Central South Univ Sci Technol, 2016, 47(1): 204沈慧明, 吴爱祥, 姜立春, 等. 全尾砂膏体小型圆柱塌落度检测. 中南大学学报(自然科学版), 2016, 47(1):204 [32] Panchal S, Deb D, Sreenivas T. Variability in rheology of cemented paste backfill with hydration age, binder and superplasticizer dosages. Adv Powder Technol, 2018, 29(9): 2211 doi: 10.1016/j.apt.2018.06.005 [33] Wang S Y, Wu A X, Ruan Z E, et al. Rheological properties of paste slurry and influence factors based on pipe loop test. J Central South Univ Sci Technol, 2018, 49(10): 2519王少勇, 吴爱祥, 阮竹恩, 等. 基于环管实验的膏体流变特性及影响因素. 中南大学学报(自然科学版), 2018, 49(10):2519 [34] Xiao J, Wang D F, Zuo S H, et al. Shear protocols of cement paste based on steady rheological test. Bull Chin Ceram Soc, 2017, 36(7): 2387肖佳, 王大富, 左胜浩, 等. 基于稳态流变测试的水泥浆体剪切模式研究. 硅酸盐通报, 2017, 36(7):2387 [35] Wu A X, Ruan Z E, Wang J D. Rheological behavior of paste in metal mines. Int J Miner Metall Mater, 2022, 29(4): 717 doi: 10.1007/s12613-022-2423-6 [36] Jiang D B, Li X G, Lv Y, et al. Utilization of limestone powder and fly ash in blended cement: rheology, strength and hydration characteristics. Constr Build Mater, 2020, 232: 117228 doi: 10.1016/j.conbuildmat.2019.117228 [37] Xie Y J, Chen X B, Ma K L, et al. Effects of limestone powder on shear thinning and shear thickening of cement-fly ash paste. J Build Mater, 2015, 18(5): 824谢友均, 陈小波, 马昆林, 等. 石灰石粉对水泥-粉煤灰浆体剪切变稀和剪切增稠的影响. 建筑材料学报, 2015, 18(5):824 [38] Grzeszczyk S, Lipowski G. Effect of content and particle size distribution of high-calcium fly ash on the rheological properties of cement pastes. Cem Concr Res, 1997, 27(6): 907 doi: 10.1016/S0008-8846(97)00073-2 [39] Ma K L, Long G C, Xie Y J, et al. Factors on affecting plastic viscosity of cement–fly ash–limestone compound pastes. J Chin Ceram Soc, 2013, 41(11): 1481马昆林, 龙广成, 谢友均, 等. 水泥–粉煤灰–石灰石粉浆体塑性黏度的影响因素. 硅酸盐学报, 2013, 41(11):1481 [40] Hoffman R L. Explanations for the cause of shear thickening in concentrated colloidal suspensions. J Rheol, 1998, 42(1): 111 doi: 10.1122/1.550884 [41] Egres R G, Nettesheim F, Wagner N J. Rheo-SANS investigation of acicular-precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J Rheol, 2006, 50(5): 685 doi: 10.1122/1.2213245 [42] Hoffman R L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. observation of a flow instability. Trans Soc Rheol, 1972, 16(1): 155 [43] Brady J F, Bossis G. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J Fluid Mech, 1985, 155: 105 doi: 10.1017/S0022112085001732 [44] Xie Y J, Chen X B, Ma K L, et al. Effects of fly ash on shearing thinning and thickening of cement paste. J Chin Ceram Soc, 2015, 43(8): 1040谢友均, 陈小波, 马昆林, 等. 粉煤灰对水泥浆体的剪切变稀和剪切增稠作用. 硅酸盐学报, 2015, 43(8):1040 [45] Ma K L, Feng J, Long G C, et al. Rheological characteristic and its mechanism of cement-fly ash paste. J Railw Sci Eng, 2017, 14(3): 465马昆林, 冯金, 龙广成, 等. 水泥−粉煤灰浆体流变特性及其机理研究. 铁道科学与工程学报, 2017, 14(3):465 [46] Wang Q, Cui X Y, Wang J, et al. Effect of fly ash on rheological properties of graphene oxide cement paste. Constr Build Mater, 2017, 138: 35 doi: 10.1016/j.conbuildmat.2017.01.126 [47] Liu Y, Li M Y, Yan P Y. Effect of mineral admixtures on rheological properties and thixotropy of binder paste. J Chin Ceram Soc, 2019, 47(5): 594刘宇, 黎梦圆, 阎培渝. 矿物掺合料对胶凝材料浆体流变性能和触变性的影响. 硅酸盐学报, 2019, 47(5):594 [48] Jiang H Q, Fall M, Yilmaz E, et al. Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy. Powder Technol, 2020, 372: 258 doi: 10.1016/j.powtec.2020.06.009 [49] Liu L. Research on Proportion Optimization and Flow Characteristic of Backfill Paste in Mine Sites [Dissertation]. Changsha: Central South University, 2013刘浪. 矿山充填膏体配比优化与流动特性研究[学位论文]. 长沙: 中南大学, 2013 [50] Tang X S, Cai Y B, Wen J B, et al. Correlation between slump flow and rheological parameters of compound pastes with high volume of ground slag. J Chin Ceram Soc, 2014, 42(5): 648唐修生, 蔡跃波, 温金保, 等. 磨细矿渣复合浆体流变参数与流动度的相关性. 硅酸盐学报, 2014, 42(5):648 [51] Celik F, Canakci H. An investigation of rheological properties of cement-based grout mixed with rice husk ash (RHA). Constr Build Mater, 2015, 91: 187 doi: 10.1016/j.conbuildmat.2015.05.025 [52] Lachemi M, Hossain K M A, Lambros V, et al. Performance of new viscosity modifying admixtures in enhancing the rheological properties of cement paste. Cem Concr Res, 2004, 34(2): 185 doi: 10.1016/S0008-8846(03)00233-3 [53] Li H Y. Study on Time-dependent Changes in Flow Properties of Cemented Coal Gangue Backfill Materials [Dissertation]. Taiyuan: Taiyuan University of Technology, 2019李化运. 煤矸石胶结充填材料流动性能经时变化研究[学位论文]. 太原: 太原理工大学, 2019 [54] Nan X L, Ji J R, Wei D B, et al. Influence of limestone powder on rheological properties of ultrahigh strength cement-based materials. J Chongqing Jiaotong Univ Nat Sci, 2022, 41(5): 100南雪丽, 姬建瑞, 魏定邦, 等. 石灰石粉对超高强水泥基材料流变特性的影响. 重庆交通大学学报(自然科学版), 2022, 41(5):100 -