• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SE注意力机制的废钢分类评级方法

肖鹏程 徐文广 张妍 朱立光 朱荣 许云峰

肖鹏程, 徐文广, 张妍, 朱立光, 朱荣, 许云峰. 基于SE注意力机制的废钢分类评级方法[J]. 工程科学学报, 2023, 45(8): 1342-1352. doi: 10.13374/j.issn2095-9389.2022.06.10.002
引用本文: 肖鹏程, 徐文广, 张妍, 朱立光, 朱荣, 许云峰. 基于SE注意力机制的废钢分类评级方法[J]. 工程科学学报, 2023, 45(8): 1342-1352. doi: 10.13374/j.issn2095-9389.2022.06.10.002
XIAO Peng-cheng, XU Wen-guang, ZHANG Yan, ZHU Li-guang, ZHU Rong, XU Yun-feng. Research on scrap classification and rating method based on SE attention mechanism[J]. Chinese Journal of Engineering, 2023, 45(8): 1342-1352. doi: 10.13374/j.issn2095-9389.2022.06.10.002
Citation: XIAO Peng-cheng, XU Wen-guang, ZHANG Yan, ZHU Li-guang, ZHU Rong, XU Yun-feng. Research on scrap classification and rating method based on SE attention mechanism[J]. Chinese Journal of Engineering, 2023, 45(8): 1342-1352. doi: 10.13374/j.issn2095-9389.2022.06.10.002

基于SE注意力机制的废钢分类评级方法

doi: 10.13374/j.issn2095-9389.2022.06.10.002
基金项目: 国家自然科学基金资助项目(51904107);河北省自然科学基金资助项目(E2020209005,E2021209094);河北省高等学校科学技术研究项目(BJ2019041);河北省“三三三人才工程”资助项目(A202102002);唐山市人才资助重点项目(A202010004)
详细信息
    通讯作者:

    E-mail:zhuliguang@ncst.edu.cn

  • 中图分类号: TP274+.5

Research on scrap classification and rating method based on SE attention mechanism

More Information
  • 摘要: 为了解决传统人工方法对废钢分类评级人为因素干扰大且效率低下等问题,提出基于挤压−激励(Squeeze−Excitation,SE)注意力机制构建废钢分类评级的深度学习网络模型,并对采集到的废钢卸载过程图像进行模型训练和验证。首先,搭建物理尺寸比例为1∶3废钢质量查验物理模型,采用高分辨率视觉传感器模拟采集货车卸载废钢作业场景下不同废钢的形貌特征;然后,对采集到的废钢图像使用跨阶段局部网络进行特征提取,利用空间金字塔结构解决特征丢失问题,采用注意力机制关注通道间的相关性;最后,在包含7个标签分类的两个数据集进行模型训练与验证。实验表明:该模型能够有效地对不同级别的废钢进行自动评级判定,全类别准确率达到83.7%,全类别平均精度为88.8%,在准确性方面相比于传统人工验质方法具有显著优势,解决了废钢入库过程中质量评价的公正性难题。

     

  • 图  1  CSSNet模型网络图

    Figure  1.  CSSNet Model network diagram

    图  2  CSP结构图

    Figure  2.  CSP structure diagram

    图  3  SPP模块结构图

    Figure  3.  SPP module structure diagram

    图  4  SE模块结构图

    Figure  4.  SE module structure diagram

    图  5  模型在HK_S和HK_L数据集上loss值变化图. (a) HK_S数据集,batch-size=16; (b)为HK_L数据集,batch-size=16; (c) HK_S数据集(添加SE注意力); (d) HK_L数据集(添加SE注意力)

    Figure  5.  Changes in the loss value of the model on the HK_S and HK_L datasets: (a) HK_S dataset, batch-size=16; (b) HK_L dataset, batch-size=16; (c) HK_S dataset (add SE attention); (d) HK_L dataset (add SE attention)

    图  6  模型加入SE注意力机制前后的表现效果对比. (a)未加SE注意力机制; (b)添加SE注意力机制

    Figure  6.  Comparison of performance effects before and after adding the SE attention mechanism into the model: (a) no SE attention mechanism; (b) add SE attention mechanism

    图  7  模型检测效果图. (a)为未检测废钢图像; (b)检测后的废钢图像

    Figure  7.  Model detection renderings: (a) the undetected scrap image; (b) the detected scrap image

    图  8  各类别评价指标曲线. (a) PR曲线; (b) F1曲线; (c) R曲线; (d) P曲线

    Figure  8.  Evaluation index curve of each category: (a) PR curve; (b) F1 curve; (c) R curve; (d) P curve

    表  1  HK_S、HK_L数据集

    Table  1.   HK_S and HK_L datasets

    DatasetsImagesLabelsTraining imagesTraining labelsValidation imagesValidation labels
    HK_S1396297125575014547
    HK_L2781259225011388281204
    下载: 导出CSV

    表  2  HK_S和HK_L数据集各类别标签数量

    Table  2.   Number of labels for each category in HK_S and HK_L datasets

    Label categoryHK_S labelsHK_S training labelsHK_L labelsHK_L training labels
    <3 mm9257184164
    3−6 mm327319654598
    >6 mm4799439395968668
    Galvanized365337730663
    Greasy dirt196173392359
    Paint12689252233
    Inclusion392382784703
    下载: 导出CSV

    表  3  正例与负例

    Table  3.   Positive and negative

    TypeP (Positive)N (Negative)
    T (True)True positive (TP)True negative (TN)
    F (False)False positive (FP)False negative (FN)
    下载: 导出CSV

    表  4  HK_S数据集模型评价指数

    Table  4.   HK_S dataset model evaluation index

    ModelBatch-sizeEpochF1mAP
    Yolov5s82000.480.506
    CSP+SPP82000.480.552
    CSP+SPP+SE82000.600.642
    Yolov5s162000.640.646
    CSP+SPP162000.630.665
    CSP+SPP+SE162000.710.719
    Yolov5s322000.680.684
    CSP+SPP322000.660.709
    CSP+SPP+SE322000.700.720
    CSP+SPP+SE323000.750.754
    下载: 导出CSV

    表  5  HK_L数据集模型评价指数

    Table  5.   HK_L dataset model evaluation index

    ModelBatch-sizeEpochF1mAP
    Yolov5s82000.610.641
    CSP+SPP82000.690.699
    CSP+SPP+SE82000.750.755
    Yolov5s162000.790.792
    CSP+SPP162000.790.802
    CSP+SPP+SE162000.830.833
    Yolov5s322000.820.805
    CSP+SPP322000.840.839
    CSP+SPP+SE322000.870.868
    CSP+SPP+SE324000.870.888
    下载: 导出CSV

    表  6  不同网络模型检测结果比较

    Table  6.   Comparison of detection results of different network models

    ModelDatasetsmAP/%
    YOLOv4HK_S60.0
    YOLOv5sHK_S50.6
    Faster R-CNNHK_S50.9
    CSSNetHK_S64.2
    YOLOv4HK_L68.1
    YOLOv5sHK_L64.1
    Faster R-CNNHK_L64.1
    CSSNetHK_L75.5
    下载: 导出CSV

    表  7  各类别验证集的表现情况

    Table  7.   Performance under each category of the validation set

    ClassImagesLabelsP/%R/%AP/%
    <3 mm282010079.886.6
    3–6 mm285689.591.293.7
    >6 mm2892891.283.788.8
    Galvanized286787.394.094.0
    Paint288192.085.291.9
    Greasy dirt283383.169.776.7
    Inclusion281910081.689.8
    下载: 导出CSV
  • [1] Wu Y G, Xiao B Q, Zhu L G, et al. Current situation analysis and prospect of iron and steel raw material for electric arc furnace steelmaking. Iron Steel, 2021, 56(11): 55 doi: 10.13228/j.boyuan.issn0449-749x.20210170

    吴耀光, 肖步庆, 朱立光, 等. 电炉炼钢钢铁原料的现状分析与展望. 钢铁, 2021, 56(11):55 doi: 10.13228/j.boyuan.issn0449-749x.20210170
    [2] Zhu R, Wu X T, Wei G S, et al. Development of green and intelligent technologies in electric arc furnace steelmaking processes. Iron Steel, 2019, 54(8): 9 doi: 10.13228/j.boyuan.issn0449-749x.20190188

    朱荣, 吴学涛, 魏光升, 等. 电弧炉炼钢绿色及智能化技术进展. 钢铁, 2019, 54(8):9 doi: 10.13228/j.boyuan.issn0449-749x.20190188
    [3] Shangguan F Q, Yin R Y, Li Y, et al. Dissussion on strategic significance of developing full scrap EAF process in China. Iron Steel, 2021, 56(8): 86 doi: 10.13228/j.boyuan.issn0449-749x.20200401

    上官方钦, 殷瑞钰, 李煜, 等. 论中国发展全废钢电炉流程的战略意义. 钢铁, 2021, 56(8):86 doi: 10.13228/j.boyuan.issn0449-749x.20200401
    [4] Wang Z L, Gu C, Wang M, et al. Research progress and application status of deep learning in steelmaking process. Chin J Eng, http://kns.cnki.net/kcms/detail/10.1297.TF.20220506.1903.003.html

    王仲亮, 顾超, 王敏, 等. 深度学习在炼钢过程中的研究进展及应用现状. 工程科学学报, http://kns.cnki.net/kcms/detail/10.1297.TF.20220506.1903.003.html
    [5] Shangguan F Q, Li X P, Zhou J C, et al. Strategic research on development of steel scrap resources in China. Iron Steel, 2020, 55(6): 8 doi: 10.13228/j.boyuan.issn0449-749x.20190427

    上官方钦, 郦秀萍, 周继程, 等. 中国废钢资源发展战略研究. 钢铁, 2020, 55(6):8 doi: 10.13228/j.boyuan.issn0449-749x.20190427
    [6] Ma Y Q. Do iron ore, scrap steel, carbon emission allowance, and seaborne transportation prices drive steel price fluctuations? Resour Policy, 2021, 72: 102115 doi: 10.1016/j.resourpol.2021.102115
    [7] Smirnov N V, Rybin E I. Machine learning methods for solving scrap metal classification task // 2020 International Russian Automation Conference (RusAutoCon). Sochi, 2020: 1020
    [8] Gao Z J, Sridhar S, Spiller D E, et al. Applying improved optical recognition with machine learning on sorting Cu impurities in steel scrap. J Sustain Metall, 2020, 6(4): 785 doi: 10.1007/s40831-020-00300-8
    [9] Koyanaka S, Kobayashi K. Automatic sorting of lightweight metal scrap by sensing apparent density and three-dimensional shape. Resour Conserv Recycl, 2010, 54(9): 571 doi: 10.1016/j.resconrec.2009.10.014
    [10] Díaz-Romero D, Sterkens W, Van den Eynde S, et al. Deep learning computer vision for the separation of Cast-and Wrought-Aluminum scrap. Resour Conserv Recycl, 2021, 172: 105685 doi: 10.1016/j.resconrec.2021.105685
    [11] Li Y F, Qin X P, Zhang Z Y, et al. A robust identification method for nonferrous metal scraps based on deep learning and superpixel optimization. Waste Manag Res, 2021, 39(4): 573 doi: 10.1177/0734242X20987884
    [12] Chen S, Hu Z L, Wang C, et al. Research on the process of small sample non-ferrous metal recognition and separation based on deep learning. Waste Manag, 2021, 126: 266 doi: 10.1016/j.wasman.2021.03.019
    [13] Ramsurrun N, Suddul G, Armoogum S, et al. Recyclable waste classification using computer vision and deep learning // 2021 Zooming Innovation in Consumer Technologies Conference (ZINC). Novi Sad, 2021: 11
    [14] Mei Y G. Research on Intelligent Classification of Scrap Based on Machine Vision and LIBS Technology [Dissertation]. Beijing: University of Science and Technology Beijing, 2021

    梅亚光. 基于机器视觉与LIBS技术的废钢智能分类研究[学位论文]. 北京: 北京科技大学, 2021
    [15] Xu G, Li M, Xu J W. Application of machine learning in automatic discrimination of product quality of deep drawn steel. Chin J Eng, 2022, 44(6): 1062 doi: 10.3321/j.issn.1001-053X.2022.6.bjkjdxxb202206011

    徐钢, 黎敏, 徐金梧. 机器学习在深冲钢质量自动判级中的应用. 工程科学学报, 2022, 44(6):1062 doi: 10.3321/j.issn.1001-053X.2022.6.bjkjdxxb202206011
    [16] Li J Y, Yang Z F, Zheng J F, et al. Applications of iron and steel industry with deep learning technologies. Iron Steel, 2021, 56(9): 43 doi: 10.13228/j.boyuan.issn0449-749x.20210296

    李江昀, 杨志方, 郑俊锋, 等. 深度学习技术在钢铁工业中的应用. 钢铁, 2021, 56(9):43 doi: 10.13228/j.boyuan.issn0449-749x.20210296
    [17] Wang D L, Zhang Y Q, Pan Y, et al. An automated inspection method for the steel box girder bottom of long-span bridges based on deep learning. IEEE Access, 2020, 8: 94010 doi: 10.1109/ACCESS.2020.2994275
    [18] Zhang L, Yang F, Zhang Y D, et al. Road crack detection using deep convolutional neural network // 2016 IEEE International Conference on Image Processing (ICIP). Phoenix, 2016: 3708
    [19] Liu Z D, Li W X, Wei Z H. Qualitative classification of waste textiles based on near infrared spectroscopy and the convolutional network. Text Res J, 2020, 90(9-10): 1057 doi: 10.1177/0040517519886032
    [20] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need // Advances in Neural Information Processing Systems. Long Beach, 2017: 30
    [21] Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, 2020: 1571
    [22] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Commun ACM, 2017, 60(6): 84 doi: 10.1145/3065386
    [23] He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell, 2015, 37(9): 1904 doi: 10.1109/TPAMI.2015.2389824
    [24] Hu J, Shen L, Sun G. Squeeze-and-excitation networks // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 7132
    [25] Zhu X K, Lyu S C, Wang X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios // Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, 2021: 2778
    [26] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 770
    [27] Alzubaidi L, Zhang J L, Humaidi A J, et al. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J Big Data, 2021, 8(1): 53 doi: 10.1186/s40537-021-00444-8
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  104
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-10
  • 网络出版日期:  2022-09-19
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回