• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于编码器与NFC修正融合的带式输送机轨道式巡检机器人定位方法

杨春雨 胡建兵 王国庆 马磊 刘晓敏

杨春雨, 胡建兵, 王国庆, 马磊, 刘晓敏. 基于编码器与NFC修正融合的带式输送机轨道式巡检机器人定位方法[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2022.06.12.003
引用本文: 杨春雨, 胡建兵, 王国庆, 马磊, 刘晓敏. 基于编码器与NFC修正融合的带式输送机轨道式巡检机器人定位方法[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2022.06.12.003
YANG Chun-yu, HU Jian-bing, WANG Guo-qing, MA Lei, LIU Xiao-min. Positioning method of an orbital inspection robot for belt conveyors based on encoder and NFC correction fusion[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.06.12.003
Citation: YANG Chun-yu, HU Jian-bing, WANG Guo-qing, MA Lei, LIU Xiao-min. Positioning method of an orbital inspection robot for belt conveyors based on encoder and NFC correction fusion[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.06.12.003

基于编码器与NFC修正融合的带式输送机轨道式巡检机器人定位方法

doi: 10.13374/j.issn2095-9389.2022.06.12.003
基金项目: 国家重点研发计划资助项目(2020YFB1314100);国家自然科学基金资助项目(62003348,62073327,61873272,62203448);江苏省自然科学基金资助项目(BK20200633,BK20200631)
详细信息
    通讯作者:

    E-mail: guoqingwang@cumt.edu.cn

  • 中图分类号: TG142.71

Positioning method of an orbital inspection robot for belt conveyors based on encoder and NFC correction fusion

More Information
  • 摘要: 轨道式巡检机器人的高精度定位技术是带式输送机智能化巡检的重要研究方向之一,而矿用带式输送机距离超长,工作环境复杂,严重影响巡检机器人的定位精度。针对目前的轨道式巡检机器人定位技术在矿用带式输送机巡检领域存在的问题,提出了基于编码器和NFC双传感器修正融合的高精度定位方法。分析带式输送机轨道式巡检机器人轨道与环境特性对编码器系数的影响,提出轨道分段原则。利用机器人搭载的编码器数据反馈特点,构建编码器递推定位方法。通过机器人运行的历史数据,对编码器系数进行分段分方向修正,并提出基于递推最小二乘的编码器系数修正方法,以提高编码器对轨道环境的适应性。在此基础上,根据机器人所在轨道分段的位置不同,在段端基于卡尔曼滤波算法实现编码器和NFC数据融合,在段内利用分段分方向修正系数与编码器信息进行递推定位,实现轨道式巡检机器人连续高精度的定位。针对所提方法搭建了实验平台并进行了实物测试,实验结果表明,相较于编码器定位、RFID定位和两者融合定位三种传统定位方式,基于编码器和NFC的修正融合定位算法能够有效提高轨道式巡检机器人定位对轨道环境的适应性,同时提高轨道式巡检机器人的定位精度。

     

  • 图  1  带式输送机轨道式巡检机器人系统

    Figure  1.  Inspection robot system of a belt conveyor

    图  2  基于编码器和NFC的机器人定位方案

    Figure  2.  Robot positioning scheme based on encoder and NFC

    图  3  基于编码器和NFC修正融合的定位算法流程

    Figure  3.  Localization algorithm of corrective fusion based on encoder and NFC

    图  4  编码器码盘与轴相对位置示意图

    Figure  4.  Relative position of the encoder disc and shaft

    图  5  实验系统

    Figure  5.  Experiment system

    图  6  S型轨道分段示意图

    Figure  6.  Schematic diagram of the S-shaped track segment

    图  7  第1段轨道双向修正系数

    Figure  7.  Bidirectional correction factor for the first track

    图  8  第10次轨道各段的修正系数

    Figure  8.  Correction factors for each segment of the 10th orbit

    图  9  四种算法第10次正向定位效果

    Figure  9.  Effect of the10th forward positioning of the four algorithms

    图  10  三种算法第10次正向误差对比

    Figure  10.  Comparison of the 10th forward errors of the three algorithms

    表  1  定位传感器参数

    Table  1.   Positioning sensor parameters

    SensorParameterValue
    EncoderFriction wheel diameter63.5 mm
    Resolution1024 (pulse per revolution)
    NFCCard read error10 mm
    下载: 导出CSV

    表  2  参数取值

    Table  2.   Parameter value

    VariableValueVariableValue
    ${\hat {\boldsymbol{k}}_j}\left( 0 \right) = k$0.1948${\boldsymbol{P}}\left( {0|0} \right)$1
    ${{\boldsymbol{P}}_j}\left( 0 \right)$$1.0 \times {10^{ - 7}}$R1
    $\hat x\left( {0|0} \right)$0.1948Q1
    下载: 导出CSV

    表  3  三种算法第10次正向精度

    Table  3.   Tenth forward accuracy of the three algorithms

    MethodRoot mean square error of positioning/ mm
    Encoder positioning72.7
    Fusion positioning22.1
    Correct fusion positioning16.6
    下载: 导出CSV
  • [1] Ribeiro R G, Júnior J R C, Cota L P, et al. Unmanned aerial vehicle location routing problem with charging stations for belt conveyor inspection system in the mining industry. IEEE Trans Intell Transp Syst, 2019, 21(10): 4186
    [2] Kawalec W, Suchorab N, Konieczna-Fuławka M, et al. Specific energy consumption of a belt conveyor system in a continuous surface mine. Energies, 2020, 13(19): 5214 doi: 10.3390/en13195214
    [3] Liu M, Zhu Q G, Yin Y F, et al. Damage detection method of mining conveyor belt based on deep learning. IEEE Sens J, 2022, 22(11): 10870 doi: 10.1109/JSEN.2022.3170971
    [4] Gao R, Miao C Y, Miao D, et al. Correction method of non-uniform illumination image for on-line fault detection of conveyor belt. J China Univ Min Technol, 2018, 47(6): 1378

    高瑞, 苗长云, 苗笛, 等. 输送带故障在线检测非均匀光照图像校正方法. 中国矿业大学学报, 2018, 47(6):1378
    [5] Qu D R, Qiao T Z, Pang Y S, et al. Research on ADCN method for damage detection of mining conveyor belt. IEEE Sens J, 2021, 21(6): 8662 doi: 10.1109/JSEN.2020.3048057
    [6] Zhang C W, Chen S R, Zhao L, et al. FPGA-based linear detection algorithm of an underground inspection robot. Algorithms, 2021, 14(10): 284 doi: 10.3390/a14100284
    [7] Jiang W, Zou D H, Zhou X, et al. Research on key technologies of multi-task-oriented live maintenance robots for Ultra High Voltage multi-split transmission lines. Ind Robot Int J Robotics Res Appl, 2021, 48(1): 17
    [8] Li H X, Ao L H, Guo H, et al. Indoor multi-sensor fusion positioning based on federated filtering. Measurement, 2020, 154: 107506 doi: 10.1016/j.measurement.2020.107506
    [9] Silva B P A, Ferreira R A M, Gomes J S C, et al. On-rail solution for autonomous inspections in electrical substations. Infrared Phys Technol, 2018, 90: 53 doi: 10.1016/j.infrared.2018.01.019
    [10] Liu H S, Ni H Y, Zhou D C, et al. Design and application of rail-type inspection robot for GIS high voltage substation // Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). Beijing, 2020: 1
    [11] Qu Y H, Yang M H, Zhang J Q, et al. An outline of multi-sensor fusion methods for mobile agents indoor navigation. Sensor, 2021, 21(5): 1605 doi: 10.3390/s21051605
    [12] Tao X W, Zhu B, Xuan S Y, et al. A multi-sensor fusion positioning strategy for intelligent vehicles using global pose graph optimization. IEEE Trans Veh Technol, 2021, 71(3): 2614
    [13] Li X Q, He W, Zhu S Q, et al. Survey of simultaneous localization and mapping based on environmental semantic information. Chin J Eng, 2021, 43(6): 754

    李小倩, 何伟, 朱世强, 等. 基于环境语义信息的同步定位与地图构建方法综述. 工程科学学报, 2021, 43(6):754
    [14] Tang C Q, Zhou G B, Gao Z X, et al. A novel rail inspection robot and fault detection method for the coal mine hoisting system. IEEE Intell Transp Syst Mag, 2019, 11(2): 110 doi: 10.1109/MITS.2019.2903540
    [15] Zhang S Y, Fan S S, Cheng J Y, et al. Design of rail type inspection robot control system based on STM32. Instrum Tech Sens, 2020(9): 93

    张申毅, 樊绍胜, 程嘉翊, 等. 基于STM32的轨道式巡检机器人控制系统的设计. 仪表技术与传感器, 2020(9):93
    [16] Zhou L H. Research and Implementation of Electrical Control and Navigation for Intelligent Dish Recycling Robot [Dissertation]. Chengdu: University of Electronic Science and Technology of China, 2018

    周林海. 智能餐盘回收机器人的电气控制和导航方法的研究与实现[学位论文]. 成都: 电子科技大学, 2018
    [17] Szrek J, Jakubiak J, Zimroz R. A mobile robot-based system for automatic inspection of belt conveyors in mining industry. Energies, 2022, 15(1): 327 doi: 10.3390/en15010327
    [18] Litton C D, Perera I E. Evaluation of criteria for the detection of fires in underground conveyor belt haulageways. Fire Saf J, 2012, 51: 110 doi: 10.1016/j.firesaf.2012.04.004
    [19] Ivanovic M, Skataric D. ICT technologies in optimization of machines movement at open-pit coal mine. Teh Vjesn, 2019, 26(4): 1152
    [20] Molnár V, Fedorko G, Stehlíková B, et al. Analysis of a pipe conveyor’s idler housing failure due to a missing roller in terms of contact forces. Eng Fail Anal, 2021, 127: 105527 doi: 10.1016/j.engfailanal.2021.105527
    [21] Lyu R Y, Cheng W C, Zhang W. Modeling and performance analysis of OAM-NFC systems. IEEE Trans Commun, 2021, 69(12): 7986 doi: 10.1109/TCOMM.2021.3110871
    [22] Alnfiai M. A user-centered design approach to near field communication-based applications for children. Int J Adv Comput Sci Appl, 2020, 11(12): 486
    [23] Sarkar T S, Das S, Chakraborty B, et al. Absolute encoder-based dual axis tilt sensor. IEEE Sens J, 2019, 19(7): 2474 doi: 10.1109/JSEN.2018.2887026
    [24] Tinazzi F, Carlet P G, Bolognani S, et al. Motor parameter-free predictive current control of synchronous motors by recursive least-square self-commissioning model. IEEE Trans Ind Electron, 2020, 67(11): 9093 doi: 10.1109/TIE.2019.2956407
    [25] Wang H, Lei T, Rong Y M, et al. Arc length stable method of GTAW based on adaptive Kalman filter. J Manuf Process, 2021, 63: 130 doi: 10.1016/j.jmapro.2020.01.029
    [26] Wang X L, Jin H Q, Liu X Y. Online estimation of the state of charge of a lithium-ion battery based on the fusion model. Chin J Eng, 2020, 42(9): 1200

    王晓兰, 靳皓晴, 刘祥远. 基于融合模型的锂离子电池荷电状态在线估计. 工程科学学报, 2020, 42(9):1200
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  183
  • HTML全文浏览量:  34
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-12
  • 网络出版日期:  2022-10-31

目录

    /

    返回文章
    返回