Step optimization of a solid waste-based binder for backfill and a study on hydration and cementation mechanism
-
摘要: 充填体强度对安全高效采矿至关重要,而胶凝材料是获得高强度充填体的关键。本文以工业固废为原料,首先借助D-optimal设计方法通过建立强度回归模型和因素影响分析得到矿渣激发剂最佳配比,然后通过矿渣掺量优化试验获得最佳矿渣掺量,进而获得胶凝材料完整配比;并以水泥为参照,借助X射线衍射仪和扫描电镜从水化产物和充填体微观结构揭示充填体强度形成机制。结果表明:(1)激发剂各组分对矿渣敏感顺序为:氢氧化钠﹥熟石灰﹥脱硫石膏﹥硫酸钠,且相互之间存在不同程度的交互作用;(2)在最佳质量配比(矿渣85.00%,熟石灰8.03%,硫酸钠3.96%,脱硫石膏1.85%,氢氧化钠1.16%)下,可获得超过单一水泥3.5倍的早期(1~3 d)强度和2倍的后期(7~28 d)强度;(3)高强度充填体的形成主要与水化产物钙矾石(AFt)和C–S–H有关,钙矾石在早期快速成核与生长,形成有效物理填充作用是形成较高早期强度的主要原因,后期强度则得益于不断累积的C–S–H的包裹黏结作用,使充填体结构进一步致密化。使用该固废基胶凝材料有助于矿山安全采矿;工业固废质量占比86.85%,协同解决了尾砂、矿渣、脱硫石膏等固废;D-optimal设计方法可用于激发剂等多物料混合物的配比设计和因素作用分析。
-
关键词:
- 尾砂胶结充填 /
- 胶凝材料 /
- D-optimal混料设计方法 /
- 水化 /
- 抗压强度
Abstract: The key to obtaining high-strength backfill is the cementing material used for backfilling. Therefore, to prepare a new slag-based binder for cemented tailings backfill, hydrated lime, desulfurized gypsum, sodium sulfate, and sodium hydroxide were selected as slag activators. Firstly, the D-optimal mixture design method was used to develop the strength regression model, analyze the influence of hydrated lime, desulfurized gypsum, sodium sulfate, and sodium hydroxide on the strength, and determine the best ratio of slag activator. Secondly, after optimizing the slag content, the optimum proportion of the binder was obtained. Lastly, X-ray diffraction and scanning electron microscopy were used to study the internal mechanism of the hydration products of the slag-based binder, the microstructure of backfill, and strength formation. The results show that the D-optimal mixture design method is a good method of obtaining the formula of the mixture with a less experimental amount. The sensitivity order to slag is sodium hydroxide > hydrated lime > desulfurized gypsum > sodium sulfate, and there are different degrees of interaction, so the weighing accuracy should be considered when batching. At the optimum mass ratio of binder (slag 85.00%, slaked lime 8.03%, sodium sulfate 3.96%, desulfurized gypsum 1.85%, and sodium hydroxide 1.16%), the early strength (1–3 d) is 3.5 times higher than that of cement, and the late strength (7–28 d) is at least two times higher than that of cement. The increased strength of hardened backfill cemented is closely related to ettringite (AFt) and C–S–H, the two primary hydration products of the new slag-based binder. During the early stages of hydration, a large amount of AFt rapidly nucleated on the surface of the slag, the distance between the tailing particles provided plenty of space for ettringite growth, and its long prismatic structure continuously extended into the intergranular pores. The rapid formation of early strength of backfill is primarily because of the physical filling effect of ettringite. In the later stage, the strength of the backfill is primarily attributed to the wrapping and bonding effect of C–S–H, which further optimizes the compact structure of the backfill. The high-strength backfill can be obtained using the new slag-based cementitious material, which is of great significance for safe and efficient mining. The slag-based binder that contains 86.94% (mass fraction) of industrial solid waste helps solve the problem of desulfurized gypsum of coal-fired power plants and mine tailings. Additionally, the D-optimal mixture design proved to be an effective method for designing and optimizing the ratio of multicomponent materials, such as binders and activator components.-
Key words:
- cemented tailings backfill /
- binder /
- D-optimal mixing design method /
- hydration /
- compressive strength
-
图 9 矿渣基碱激发胶凝材料(a)和OPC制备(b)净浆样品水化3 d和14 d的XRD谱图(H—氢氧化钙;E—钙矾石(AFt);R—水化硅酸钙(C–S–H);Z—针硅钙石;C—碳酸钙;Q—石英;G—GaSO4·2H2O;A—铝酸三钙; F—铁铝酸四钙;D—硅酸二钙;B—半水硫酸钙;T—硅酸三钙)
Figure 9. XRD patterns of paste sample prepared using a new alkali-activated slag-based binder (a) and cement (b) after hydration for 3 and 14 d (H—Calcium hydroxide; E—Ettringite (AFt); R—Calcium silicate hydrate (C–S–H); Z—Hillebrandite; C—Calcium carbonate; Q—Quartz; G—Gypsum; A—Calcium aluminate; F—Tetracalcium aluminoferrite; D—Dicalcium silicate; B—Hemihydrate gypsum; T—Tricalcium silicate)
图 10 新型胶凝材料和OPC制备充填体内部微观形貌对比。(a)新型胶凝材料样品,养护3 d;(b)新型胶凝材料样品,养护14 d;(c) OPC样品,养护3 d;(d) OPC样品,养护14 d
Figure 10. Comparison of the internal morphology of backfill prepared using the new binder and cement: (a) new binder sample, cured for 3 d; (b) new binder sample, cured for 14 d; (c) cement sample, cured for 3 d; (d) cement sample, cured for 14 d
表 1 固体材料化学组成(质量分数)
Table 1. Chemical compositions of solid materials by mass
% Solid material CaO SiO2 Al2O3 MgO SO3 Na2O TiO2 Fe2O3 K2O MnO P2O5 Tailings 2.72 70.70 15.00 1.10 0.27 3.52 0.15 1.28 4.93 0.04 0.06 Slag 39.80 27.30 14.50 11.40 2.50 — 1.07 0.24 0.27 0.33 0.02 Desulfurized gypsum 41.98 2.86 1.34 2.48 51.03 — — 0.41 0.14 — 0.02 OPC 50.34 24.21 8.94 6.64 4.01 0.86 0.38 2.34 1.21 0.21 0.06 表 2 D-optimal设计方案及强度结果
Table 2. Scheme and strength results of D-optimal mixture design
Order Mass fraction / % Mean strength-7 d/MPa Slag A: Hydrated lime B: Sodium sulfate C: Desulfurized gypsum D: Sodium hydroxide 1 60 19.47 14.51 5.00 1.02 1.87 2 60 15.00 19.00 1.00 5.00 1.91 3 60 20.19 12.13 3.16 4.52 2.28 4 60 26.34 5.00 5.00 3.66 2.40 5 60 25.72 10.67 1.00 2.61 2.18 6 60 15.84 14.16 5.00 5.00 2.34 7 60 13.83 20.00 3.34 2.83 2.30 8 60 33.00 5.00 1.00 1.00 1.96 9 60 12.16 17.84 5.00 5.00 2.05 10 60 13.83 20.00 3.34 2.83 2.24 11 60 21.80 16.20 1.00 1.00 2.17 12 60 20.19 12.13 3.16 4.52 2.24 13 60 26.34 5.00 5.00 3.66 2.44 14 60 18.05 19.95 1.00 1.00 2.30 15 60 20.19 12.13 3.16 4.52 2.24 16 60 23.21 10.81 4.98 1.00 2.32 17 60 25.72 10.67 1.00 2.61 2.06 18 60 29.17 7.10 2.73 1.00 2.00 19 60 23.01 8.19 3.80 5.00 2.14 20 60 29.00 5.00 1.00 5.00 1.90 表 3 方差分析结果
Table 3. Results of variance analysis
Source Sum of squares Degree of freedom Mean square F-value P-value Remark Model 0.5539 13 0.0426 17.41 0.0011 Significant Linear mixture 0.1058 3 0.0353 14.41 0.0038 — AB 0.0006 1 0.0006 0.2461 0.6375 — AC 0.0018 1 0.0018 0.7254 0.4271 — AD 0.0625 1 0.0625 25.52 0.0023 — BC 0.0237 1 0.0237 9.70 0.0207 — BD 0.0501 1 0.0501 20.45 0.0040 — CD 0.0084 1 0.0084 3.42 0.1138 — ABC 0.0528 1 0.0528 21.56 0.0035 — ABD 0.0252 1 0.0252 10.28 0.0185 — ACD 0.0001 1 0.0001 0.0529 0.8257 — BCD 0.0048 1 0.0048 1.98 0.2094 — Residual 0.0147 6 0.0024 — — — Lack of fit 0.0038 1 0.0038 1.76 0.2423 Not significant Corrected total 0.5686 19 — — — — 表 4 优化组合及其期望值
Table 4. Optimized combination and its expected value
Order Optimized combination/% Predicted value/MPa Expected value/MPa A B C D 1 21.42 10.57 4.92 3.09 3.02 0.865 2 19.77 13.00 4.28 2.96 2.93 0.796 3 24.69 9.00 3.50 2.81 2.86 0.743 表 5 验证试验及其结果
Table 5. Optimized combination and its expected value
Order Optimized combination/% Predicted value/MPa Actual value/MPa Deviation/% A B C D 1 21.42 10.57 4.92 3.09 3.02 2.72 9.93 2 19.77 13.00 4.28 3.09 2.93 2.55 13.00 3 24.69 9.00 3.50 3.09 2.86 2.49 12.87 -
参考文献
[1] Wu A X, Wang Y, Zhang M Z, et al. New development and prospect of key technology in underground mining of metal mines. Met Mine, 2021(1): 1 doi: 10.19614/j.cnki.jsks.202101001吴爱祥, 王勇, 张敏哲, 等. 金属矿山地下开采关键技术新进展与展望. 金属矿山, 2021(1):1 doi: 10.19614/j.cnki.jsks.202101001 [2] Shen Z X, Zhang Q, Chen D L, et al. Varying effects of mining development on ecological conditions and groundwater storage in dry region in Inner Mongolia of China. J Hydrol, 2021, 597: 125759 doi: 10.1016/j.jhydrol.2020.125759 [3] Ruan Z E, Wu A X, Wang Y M, et al. Multiple response optimization of key performance indicators of cemented paste backfill of total solid waste. Chin J Eng, 2022, 44(4): 496 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204004阮竹恩, 吴爱祥, 王贻明, 等. 全固废膏体关键性能指标的多目标优化. 工程科学学报, 2022, 44(4):496 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204004 [4] Yang C H, Zhang C, Li Q M, et al. Disaster mechanism and prevention methods of large-scale high tailings dam. Rock Soil Mech, 2021, 42(1): 1 doi: 10.16285/j.rsm.2020.1653杨春和, 张超, 李全明, 等. 大型高尾矿坝灾变机制与防控方法. 岩土力学, 2021, 42(1):1 doi: 10.16285/j.rsm.2020.1653 [5] Amari K E, Hibti M. A comparison between kinetic test results and natural weathering: The abandoned kettara mine tailings pond. Mine Water Environ, 2020, 39(1): 157 doi: 10.1007/s10230-019-00642-0 [6] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417蔡美峰, 薛鼎龙, 任奋华. 金属矿深部开采现状与发展战略. 工程科学学报, 2019, 41(4):417 [7] Cheng H Y, Wu A X, Wu S C, et al. Research status and development trend of solid waste backfill in metal mines. Chin J Eng, 2022, 44(1): 11 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201002程海勇, 吴爱祥, 吴顺川, 等. 金属矿山固废充填研究现状与发展趋势. 工程科学学报, 2022, 44(1):11 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201002 [8] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517吴爱祥, 杨莹, 程海勇, 等. 中国膏体技术发展现状与趋势. 工程科学学报, 2018, 40(5):517 [9] Benzaazoua M, Fall M, Belem T. A contribution to understanding the hardening process of cemented pastefill. Miner Eng, 2004, 17(2): 141 doi: 10.1016/j.mineng.2003.10.022 [10] Yu R C. Theory and Engineering Practice of Metal Cemented Filling in Mines. Beijing: Metallurgical Industry Press, 2020于润沧. 金属矿山胶结充填理论与工程实践. 北京: 冶金工业出版社, 2020 [11] Wu A X, Wang H J. Theory and Technology of Metal Paste Filling. Beijing: Science Press, 2015吴爱祥, 王洪江. 金属矿膏体充填理论与技术. 北京: 科学出版社, 2015 [12] Tariq A, Yanful E K. A review of binders used in cemented paste tailings for underground and surface disposal practices. J Environ Manag, 2013, 131: 138 doi: 10.1016/j.jenvman.2013.09.039 [13] Xu W B, Li Q L, Liu B. Coupled effect of curing temperature and age on compressive behavior, microstructure and ultrasonic properties of cemented tailings backfill. Constr Build Mater, 2020, 237: 117738 doi: 10.1016/j.conbuildmat.2019.117738 [14] Aprianti E, Shafigh P, Bahri S, et al. Supplementary cementitious materials origin from agricultural wastes - A review. Constr Build Mater, 2015, 74: 176 doi: 10.1016/j.conbuildmat.2014.10.010 [15] Qiu J P, Guo Z B, Yang L, et al. Effect of tailings fineness on flow, strength, ultrasonic and microstructure characteristics of cemented paste backfill. Constr Build Mater, 2020, 263: 120645 doi: 10.1016/j.conbuildmat.2020.120645 [16] Jiang G Z, Wu A X, Wang Y M. Curing performance of alkali-activated cement-phosphorous slag and its compatibility with sulfur tailings. Chin J Eng, 2020, 42(8): 963姜关照, 吴爱祥, 王贻明. 碱激发水泥–磷渣固化性能及与含硫尾砂的相容性. 工程科学学报, 2020, 42(8):963 [17] Zhang Y J, Yang M Y, Kang L, et al. Research progresses of new type alkali–activated cementitious material catalyst. J Inorg Mater, 2016, 31(3): 225 doi: 10.15541/jim20150412张耀君, 杨梦阳, 康乐, 等. 一类新型碱激发胶凝材料催化剂的研究进展. 无机材料学报, 2016, 31(3):225 doi: 10.15541/jim20150412 [18] Wu P, Wang J X, Hu S G, et al. Preparation and performance of slag-based binders for the cementation of fine tailings. J Adhesion Sci Technol, 2018, 32(9): 976 doi: 10.1080/01694243.2017.1394034 [19] Wang H F, Yan H D, Yang W. Properties of alkali-activated fly-ash and cement recycled asphalt concrete. Eng J Wuhan Univ, 2019, 52(6): 504 doi: 10.14188/j.1671-8844.2019-06-005王海峰, 严捍东, 杨伟. 碱激发粉煤灰水泥再生沥青混凝土性能研究. 武汉大学学报(工学版), 2019, 52(6):504 doi: 10.14188/j.1671-8844.2019-06-005 [20] Rashad A M. A comprehensive overview about the influence of different additives on the properties of alkali-activated slag—A guide for Civil Engineer. Constr Build Mater, 2013, 47: 29 doi: 10.1016/j.conbuildmat.2013.04.011 [21] Wen Z J. Study on Preparation and Application of Binder with Steel Slag and Slag for the Cemented Superfine Tailings Backfill [Dissertation]. Beijing: University of Science and Technology Beijing, 2022温震江. 钢渣协同矿渣制备超细尾砂充填胶结料及应用研究[学位论文]. 北京: 北京科技大学, 2022 [22] Xu X H, He M Z. Experiment and Application of Design-Expert and SPSS. Beijing: Science Press, 2010徐向宏, 何明珠. 试验设计与Design-Expert、SPSS应用. 北京: 科学出版社, 2010 [23] Arroyo-López F N, Bautista-Gallego J, Chiesa A, et al. Use of a D-optimal mixture design to estimate the effects of diverse chloride salts on the growth parameters of Lactobacillus pentosus. Food Microbiol, 2009, 26(4): 396 doi: 10.1016/j.fm.2009.01.009 [24] Yeom D W, Song Y S, Kim S R, et al. Development and optimization of a self-microemulsifying drug delivery system for atorvastatin calcium by using D-optimal mixture design. Int J Nanomedicine, 2015, 10: 3865 [25] Guo J Y, Hao C L, Wang L S, et al. Optimization of flotation agents of long-flame coal by D-optimal mixture design. J China Coal Soc, 2019, 44(6): 1883 doi: 10.13225/j.cnki.jccs.2018.0968郭金玉, 郝成亮, 王灵双, 等. 基于D-最优混料设计的长焰煤浮选药剂的优化. 煤炭学报, 2019, 44(6):1883 doi: 10.13225/j.cnki.jccs.2018.0968 [26] Zheng W Z, Zou M N, Wang Y. Research progress of alkali-activated cementitious materials. J Build Struct, 2019, 40(1): 28 doi: 10.14006/j.jzjgxb.2019.01.003郑文忠, 邹梦娜, 王英. 碱激发胶凝材料研究进展. 建筑结构学报, 2019, 40(1):28 doi: 10.14006/j.jzjgxb.2019.01.003 [27] Yang Z Q, Gao Q, Wang Y Q, et al. Experimental study on new filling cementing material using water-hardening nickel slag tailings of Jinchuan Mine. Chin J Geotech Eng, 2014, 36(8): 1498 doi: 10.11779/CJGE201408016杨志强, 高谦, 王永前, 等. 利用金川水淬镍渣尾砂开发新型充填胶凝剂试验研究. 岩土工程学报, 2014, 36(8):1498 doi: 10.11779/CJGE201408016 [28] Mi G D. Studies on the Hydration Performance of Complex Cementitious Materials [Dissertation]. Beijing: Tsinghua University, 2016米贵东. 多组分复合胶凝材料体系水化性能研究[学位论文]. 北京: 清华大学, 2016 [29] Rashad A M. An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete. Constr Build Mater, 2018, 187: 89 doi: 10.1016/j.conbuildmat.2018.07.150 [30] Cui C, Peng H, Liu Y, et al. Influence of GGBFS content and activator modulus on curing of metakaolin based geopolymer at ambient temperature. J Build Mater, 2017, 20(4): 535 doi: 10.3969/j.issn.1007-9629.2017.04.008崔潮, 彭晖, 刘扬, 等. 矿渣掺量及激发剂模数对偏高岭土基地聚物常温固化的影响. 建筑材料学报, 2017, 20(4):535 doi: 10.3969/j.issn.1007-9629.2017.04.008 [31] Song S J, Jennings H M. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cem Concr Res, 1999, 29(2): 159 doi: 10.1016/S0008-8846(98)00212-9 [32] Han F H, Wang D M, Yan P Y. Hydration kinetics of composite binder containing different content of slag or fly ash. J Chin Ceram Soc, 2014, 42(5): 613 doi: 10.7521/j.issn.0454-5648.2014.05.10韩方晖, 王栋民, 阎培渝. 含不同掺量矿渣或粉煤灰的复合胶凝材料的水化动力学. 硅酸盐学报, 2014, 42(5):613 doi: 10.7521/j.issn.0454-5648.2014.05.10 [33] Liu J H, Zhou Z B, Wu A X, et al. Preparation and hydration mechanism of low concentration Bayer red mud filling materials. Chin J Eng, 2020, 42(11): 1457刘娟红, 周在波, 吴爱祥, 等. 低浓度拜耳赤泥充填材料制备及水化机理. 工程科学学报, 2020, 42(11):1457 [34] Brough A R, Holloway M, Sykes J, et al. Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid. Cem Concr Res, 2000, 30(9): 1375 [35] Zhang J, Shi C J, Zhang Z H, et al. Durability of alkali-activated materials in aggressive environments: A review on recent studies. Constr Build Mater, 2017, 152: 598 doi: 10.1016/j.conbuildmat.2017.07.027 -