• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固废基充填胶凝材料配比分步优化及其水化胶结机理

朱庚杰 朱万成 齐兆军 侯晨

朱庚杰, 朱万成, 齐兆军, 侯晨. 固废基充填胶凝材料配比分步优化及其水化胶结机理[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2022.06.24.001
引用本文: 朱庚杰, 朱万成, 齐兆军, 侯晨. 固废基充填胶凝材料配比分步优化及其水化胶结机理[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2022.06.24.001
ZHU Geng-jie, ZHU Wan-cheng, QI Zhao-jun, HOU Chen. Step optimization of a solid waste-based binder for backfill and a study on hydration and cementation mechanism[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.06.24.001
Citation: ZHU Geng-jie, ZHU Wan-cheng, QI Zhao-jun, HOU Chen. Step optimization of a solid waste-based binder for backfill and a study on hydration and cementation mechanism[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.06.24.001

固废基充填胶凝材料配比分步优化及其水化胶结机理

doi: 10.13374/j.issn2095-9389.2022.06.24.001
基金项目: 国家自然科学基金资助项目(51904055,U1906208,51874069)
详细信息
    通讯作者:

    E-mail: zhuwancheng@mail.neu.edu.cn

  • 中图分类号: TD926.4

Step optimization of a solid waste-based binder for backfill and a study on hydration and cementation mechanism

More Information
  • 摘要: 充填体强度对安全高效采矿至关重要,而胶凝材料是获得高强度充填体的关键。本文以工业固废为原料,首先借助D-optimal设计方法通过建立强度回归模型和因素影响分析得到矿渣激发剂最佳配比,然后通过矿渣掺量优化试验获得最佳矿渣掺量,进而获得胶凝材料完整配比;并以水泥为参照,借助X射线衍射仪和扫描电镜从水化产物和充填体微观结构揭示充填体强度形成机制。结果表明:(1)激发剂各组分对矿渣敏感顺序为:氢氧化钠﹥熟石灰﹥脱硫石膏﹥硫酸钠,且相互之间存在不同程度的交互作用;(2)在最佳质量配比(矿渣85.00%,熟石灰8.03%,硫酸钠3.96%,脱硫石膏1.85%,氢氧化钠1.16%)下,可获得超过单一水泥3.5倍的早期(1~3 d)强度和2倍的后期(7~28 d)强度;(3)高强度充填体的形成主要与水化产物钙矾石(AFt)和C–S–H有关,钙矾石在早期快速成核与生长,形成有效物理填充作用是形成较高早期强度的主要原因,后期强度则得益于不断累积的C–S–H的包裹黏结作用,使充填体结构进一步致密化。使用该固废基胶凝材料有助于矿山安全采矿;工业固废质量占比86.85%,协同解决了尾砂、矿渣、脱硫石膏等固废;D-optimal设计方法可用于激发剂等多物料混合物的配比设计和因素作用分析。

     

  • 图  1  尾砂、矿渣、脱硫石膏、熟石灰和OPC的粒径分布

    Figure  1.  Particle size distribution of tailings, slag, desulfurized gypsum, hydrated lime, and cement

    图  2  主要固体粉料的XRD谱图。(a) 尾砂;(b) 矿渣;(c) OPC

    Figure  2.  XRD patterns of main solid materials: (a) tailings; (b) slag; (c) OPC

    图  3  尾砂微观形貌

    Figure  3.  Micromorphology of tailings

    图  4  残差正态图

    Figure  4.  Normal plot of residuals

    图  5  熟石灰、硫酸钠、脱硫石膏和氢氧化钠对充填体强度的影响

    Figure  5.  Influence of hydrated lime, sodium sulfate, desulfurized gypsum, and sodium hydroxide on the strength of cemented backfill

    图  6  不同原料配比对强度的影响

    Figure  6.  Influence of different raw material ratios on strength

    图  7  矿渣掺量对尾砂充填体强度的影响

    Figure  7.  Effect of slag dosage on strength of cemented tailings backfill

    图  8  使用OPC和新型胶凝材料制备充填体的强度对比

    Figure  8.  Strength comparison between backfill prepared with OPC and new binder

    图  9  矿渣基碱激发胶凝材料(a)和OPC制备(b)净浆样品水化3 d和14 d的XRD谱图(H—氢氧化钙;E—钙矾石(AFt);R—水化硅酸钙(C–S–H);Z—针硅钙石;C—碳酸钙;Q—石英;G—GaSO4·2H2O;A—铝酸三钙; F—铁铝酸四钙;D—硅酸二钙;B—半水硫酸钙;T—硅酸三钙)

    Figure  9.  XRD patterns of paste sample prepared using a new alkali-activated slag-based binder (a) and cement (b) after hydration for 3 and 14 d (H—Calcium hydroxide; E—Ettringite (AFt); R—Calcium silicate hydrate (C–S–H); Z—Hillebrandite; C—Calcium carbonate; Q—Quartz; G—Gypsum; A—Calcium aluminate; F—Tetracalcium aluminoferrite; D—Dicalcium silicate; B—Hemihydrate gypsum; T—Tricalcium silicate)

    图  10  新型胶凝材料和OPC制备充填体内部微观形貌对比。(a)新型胶凝材料样品,养护3 d;(b)新型胶凝材料样品,养护14 d;(c) OPC样品,养护3 d;(d) OPC样品,养护14 d

    Figure  10.  Comparison of the internal morphology of backfill prepared using the new binder and cement: (a) new binder sample, cured for 3 d; (b) new binder sample, cured for 14 d; (c) cement sample, cured for 3 d; (d) cement sample, cured for 14 d

    表  1  固体材料化学组成(质量分数)

    Table  1.   Chemical compositions of solid materials by mass %

    Solid materialCaOSiO2Al2O3MgOSO3Na2OTiO2Fe2O3K2OMnOP2O5
    Tailings2.7270.7015.001.100.273.520.151.284.930.040.06
    Slag39.8027.3014.5011.402.501.070.240.270.330.02
    Desulfurized gypsum41.982.861.342.4851.030.410.140.02
    OPC50.3424.218.946.644.010.860.382.341.210.210.06
    下载: 导出CSV

    表  2  D-optimal设计方案及强度结果

    Table  2.   Scheme and strength results of D-optimal mixture design

    OrderMass fraction / %Mean strength-7 d/MPa
    SlagA: Hydrated lime
    B: Sodium sulfateC: Desulfurized gypsumD: Sodium hydroxide
    16019.4714.515.001.021.87
    26015.0019.001.005.001.91
    36020.1912.133.164.522.28
    46026.345.005.003.662.40
    56025.7210.671.002.612.18
    66015.8414.165.005.002.34
    76013.8320.003.342.832.30
    86033.005.001.001.001.96
    96012.1617.845.005.002.05
    106013.8320.003.342.832.24
    116021.8016.201.001.002.17
    126020.1912.133.164.522.24
    136026.345.005.003.662.44
    146018.0519.951.001.002.30
    156020.1912.133.164.522.24
    166023.2110.814.981.002.32
    176025.7210.671.002.612.06
    186029.177.102.731.002.00
    196023.018.193.805.002.14
    206029.005.001.005.001.90
    下载: 导出CSV

    表  3  方差分析结果

    Table  3.   Results of variance analysis

    SourceSum of squaresDegree of freedomMean squareF-valueP-valueRemark
    Model0.5539130.042617.410.0011Significant
    Linear mixture0.105830.035314.410.0038
    AB0.000610.00060.24610.6375
    AC0.001810.00180.72540.4271
    AD0.062510.062525.520.0023
    BC0.023710.02379.700.0207
    BD0.050110.050120.450.0040
    CD0.008410.00843.420.1138
    ABC0.052810.052821.560.0035
    ABD0.025210.025210.280.0185
    ACD0.000110.00010.05290.8257
    BCD0.004810.00481.980.2094
    Residual0.014760.0024
    Lack of fit0.003810.00381.760.2423Not significant
    Corrected total0.568619
    下载: 导出CSV

    表  4  优化组合及其期望值

    Table  4.   Optimized combination and its expected value

    OrderOptimized combination/%Predicted value/MPaExpected value/MPa
    ABCD
    121.4210.574.923.093.020.865
    219.7713.004.282.962.930.796
    324.699.003.502.812.860.743
    下载: 导出CSV

    表  5  验证试验及其结果

    Table  5.   Optimized combination and its expected value

    OrderOptimized combination/%Predicted value/MPaActual value/MPaDeviation/%
    ABCD
    121.4210.574.923.093.022.729.93
    219.7713.004.283.092.932.5513.00
    324.699.003.503.092.862.4912.87
    下载: 导出CSV
  • [1] Wu A X, Wang Y, Zhang M Z, et al. New development and prospect of key technology in underground mining of metal mines. Met Mine, 2021(1): 1 doi: 10.19614/j.cnki.jsks.202101001

    吴爱祥, 王勇, 张敏哲, 等. 金属矿山地下开采关键技术新进展与展望. 金属矿山, 2021(1):1 doi: 10.19614/j.cnki.jsks.202101001
    [2] Shen Z X, Zhang Q, Chen D L, et al. Varying effects of mining development on ecological conditions and groundwater storage in dry region in Inner Mongolia of China. J Hydrol, 2021, 597: 125759 doi: 10.1016/j.jhydrol.2020.125759
    [3] Ruan Z E, Wu A X, Wang Y M, et al. Multiple response optimization of key performance indicators of cemented paste backfill of total solid waste. Chin J Eng, 2022, 44(4): 496 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204004

    阮竹恩, 吴爱祥, 王贻明, 等. 全固废膏体关键性能指标的多目标优化. 工程科学学报, 2022, 44(4):496 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204004
    [4] Yang C H, Zhang C, Li Q M, et al. Disaster mechanism and prevention methods of large-scale high tailings dam. Rock Soil Mech, 2021, 42(1): 1 doi: 10.16285/j.rsm.2020.1653

    杨春和, 张超, 李全明, 等. 大型高尾矿坝灾变机制与防控方法. 岩土力学, 2021, 42(1):1 doi: 10.16285/j.rsm.2020.1653
    [5] Amari K E, Hibti M. A comparison between kinetic test results and natural weathering: The abandoned kettara mine tailings pond. Mine Water Environ, 2020, 39(1): 157 doi: 10.1007/s10230-019-00642-0
    [6] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417

    蔡美峰, 薛鼎龙, 任奋华. 金属矿深部开采现状与发展战略. 工程科学学报, 2019, 41(4):417
    [7] Cheng H Y, Wu A X, Wu S C, et al. Research status and development trend of solid waste backfill in metal mines. Chin J Eng, 2022, 44(1): 11 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201002

    程海勇, 吴爱祥, 吴顺川, 等. 金属矿山固废充填研究现状与发展趋势. 工程科学学报, 2022, 44(1):11 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201002
    [8] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517

    吴爱祥, 杨莹, 程海勇, 等. 中国膏体技术发展现状与趋势. 工程科学学报, 2018, 40(5):517
    [9] Benzaazoua M, Fall M, Belem T. A contribution to understanding the hardening process of cemented pastefill. Miner Eng, 2004, 17(2): 141 doi: 10.1016/j.mineng.2003.10.022
    [10] Yu R C. Theory and Engineering Practice of Metal Cemented Filling in Mines. Beijing: Metallurgical Industry Press, 2020

    于润沧. 金属矿山胶结充填理论与工程实践. 北京: 冶金工业出版社, 2020
    [11] Wu A X, Wang H J. Theory and Technology of Metal Paste Filling. Beijing: Science Press, 2015

    吴爱祥, 王洪江. 金属矿膏体充填理论与技术. 北京: 科学出版社, 2015
    [12] Tariq A, Yanful E K. A review of binders used in cemented paste tailings for underground and surface disposal practices. J Environ Manag, 2013, 131: 138 doi: 10.1016/j.jenvman.2013.09.039
    [13] Xu W B, Li Q L, Liu B. Coupled effect of curing temperature and age on compressive behavior, microstructure and ultrasonic properties of cemented tailings backfill. Constr Build Mater, 2020, 237: 117738 doi: 10.1016/j.conbuildmat.2019.117738
    [14] Aprianti E, Shafigh P, Bahri S, et al. Supplementary cementitious materials origin from agricultural wastes - A review. Constr Build Mater, 2015, 74: 176 doi: 10.1016/j.conbuildmat.2014.10.010
    [15] Qiu J P, Guo Z B, Yang L, et al. Effect of tailings fineness on flow, strength, ultrasonic and microstructure characteristics of cemented paste backfill. Constr Build Mater, 2020, 263: 120645 doi: 10.1016/j.conbuildmat.2020.120645
    [16] Jiang G Z, Wu A X, Wang Y M. Curing performance of alkali-activated cement-phosphorous slag and its compatibility with sulfur tailings. Chin J Eng, 2020, 42(8): 963

    姜关照, 吴爱祥, 王贻明. 碱激发水泥–磷渣固化性能及与含硫尾砂的相容性. 工程科学学报, 2020, 42(8):963
    [17] Zhang Y J, Yang M Y, Kang L, et al. Research progresses of new type alkali–activated cementitious material catalyst. J Inorg Mater, 2016, 31(3): 225 doi: 10.15541/jim20150412

    张耀君, 杨梦阳, 康乐, 等. 一类新型碱激发胶凝材料催化剂的研究进展. 无机材料学报, 2016, 31(3):225 doi: 10.15541/jim20150412
    [18] Wu P, Wang J X, Hu S G, et al. Preparation and performance of slag-based binders for the cementation of fine tailings. J Adhesion Sci Technol, 2018, 32(9): 976 doi: 10.1080/01694243.2017.1394034
    [19] Wang H F, Yan H D, Yang W. Properties of alkali-activated fly-ash and cement recycled asphalt concrete. Eng J Wuhan Univ, 2019, 52(6): 504 doi: 10.14188/j.1671-8844.2019-06-005

    王海峰, 严捍东, 杨伟. 碱激发粉煤灰水泥再生沥青混凝土性能研究. 武汉大学学报(工学版), 2019, 52(6):504 doi: 10.14188/j.1671-8844.2019-06-005
    [20] Rashad A M. A comprehensive overview about the influence of different additives on the properties of alkali-activated slag—A guide for Civil Engineer. Constr Build Mater, 2013, 47: 29 doi: 10.1016/j.conbuildmat.2013.04.011
    [21] Wen Z J. Study on Preparation and Application of Binder with Steel Slag and Slag for the Cemented Superfine Tailings Backfill [Dissertation]. Beijing: University of Science and Technology Beijing, 2022

    温震江. 钢渣协同矿渣制备超细尾砂充填胶结料及应用研究[学位论文]. 北京: 北京科技大学, 2022
    [22] Xu X H, He M Z. Experiment and Application of Design-Expert and SPSS. Beijing: Science Press, 2010

    徐向宏, 何明珠. 试验设计与Design-Expert、SPSS应用. 北京: 科学出版社, 2010
    [23] Arroyo-López F N, Bautista-Gallego J, Chiesa A, et al. Use of a D-optimal mixture design to estimate the effects of diverse chloride salts on the growth parameters of Lactobacillus pentosus. Food Microbiol, 2009, 26(4): 396 doi: 10.1016/j.fm.2009.01.009
    [24] Yeom D W, Song Y S, Kim S R, et al. Development and optimization of a self-microemulsifying drug delivery system for atorvastatin calcium by using D-optimal mixture design. Int J Nanomedicine, 2015, 10: 3865
    [25] Guo J Y, Hao C L, Wang L S, et al. Optimization of flotation agents of long-flame coal by D-optimal mixture design. J China Coal Soc, 2019, 44(6): 1883 doi: 10.13225/j.cnki.jccs.2018.0968

    郭金玉, 郝成亮, 王灵双, 等. 基于D-最优混料设计的长焰煤浮选药剂的优化. 煤炭学报, 2019, 44(6):1883 doi: 10.13225/j.cnki.jccs.2018.0968
    [26] Zheng W Z, Zou M N, Wang Y. Research progress of alkali-activated cementitious materials. J Build Struct, 2019, 40(1): 28 doi: 10.14006/j.jzjgxb.2019.01.003

    郑文忠, 邹梦娜, 王英. 碱激发胶凝材料研究进展. 建筑结构学报, 2019, 40(1):28 doi: 10.14006/j.jzjgxb.2019.01.003
    [27] Yang Z Q, Gao Q, Wang Y Q, et al. Experimental study on new filling cementing material using water-hardening nickel slag tailings of Jinchuan Mine. Chin J Geotech Eng, 2014, 36(8): 1498 doi: 10.11779/CJGE201408016

    杨志强, 高谦, 王永前, 等. 利用金川水淬镍渣尾砂开发新型充填胶凝剂试验研究. 岩土工程学报, 2014, 36(8):1498 doi: 10.11779/CJGE201408016
    [28] Mi G D. Studies on the Hydration Performance of Complex Cementitious Materials [Dissertation]. Beijing: Tsinghua University, 2016

    米贵东. 多组分复合胶凝材料体系水化性能研究[学位论文]. 北京: 清华大学, 2016
    [29] Rashad A M. An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete. Constr Build Mater, 2018, 187: 89 doi: 10.1016/j.conbuildmat.2018.07.150
    [30] Cui C, Peng H, Liu Y, et al. Influence of GGBFS content and activator modulus on curing of metakaolin based geopolymer at ambient temperature. J Build Mater, 2017, 20(4): 535 doi: 10.3969/j.issn.1007-9629.2017.04.008

    崔潮, 彭晖, 刘扬, 等. 矿渣掺量及激发剂模数对偏高岭土基地聚物常温固化的影响. 建筑材料学报, 2017, 20(4):535 doi: 10.3969/j.issn.1007-9629.2017.04.008
    [31] Song S J, Jennings H M. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cem Concr Res, 1999, 29(2): 159 doi: 10.1016/S0008-8846(98)00212-9
    [32] Han F H, Wang D M, Yan P Y. Hydration kinetics of composite binder containing different content of slag or fly ash. J Chin Ceram Soc, 2014, 42(5): 613 doi: 10.7521/j.issn.0454-5648.2014.05.10

    韩方晖, 王栋民, 阎培渝. 含不同掺量矿渣或粉煤灰的复合胶凝材料的水化动力学. 硅酸盐学报, 2014, 42(5):613 doi: 10.7521/j.issn.0454-5648.2014.05.10
    [33] Liu J H, Zhou Z B, Wu A X, et al. Preparation and hydration mechanism of low concentration Bayer red mud filling materials. Chin J Eng, 2020, 42(11): 1457

    刘娟红, 周在波, 吴爱祥, 等. 低浓度拜耳赤泥充填材料制备及水化机理. 工程科学学报, 2020, 42(11):1457
    [34] Brough A R, Holloway M, Sykes J, et al. Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid. Cem Concr Res, 2000, 30(9): 1375
    [35] Zhang J, Shi C J, Zhang Z H, et al. Durability of alkali-activated materials in aggressive environments: A review on recent studies. Constr Build Mater, 2017, 152: 598 doi: 10.1016/j.conbuildmat.2017.07.027
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  36
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 网络出版日期:  2022-09-02

目录

    /

    返回文章
    返回