Recent advances in P2-type Ni–Mn-based layered oxide cathodes for sodium-ion batteries
-
摘要: P2型Na0.67[Ni, Mn]O2材料由于较高的比容量、工作电压以及较好的空气稳定性成为最具前景的钠离子电池正极材料之一。然而,高压相变、Na+/空位有序排布以及由Mn3+引起的Jahn–Teller扭曲导致该类材料充放电过程中面临结构失稳以及性能衰减的挑战。本综述从P2型Na0.67[Ni, Mn]O2材料的失效机制出发,系统阐述了该类材料的最新进展。最后,对其未来的发展方向进行了展望。本文将为P2-type Na0.67[Ni, Mn]O2材料的研发与商业化提供借鉴。Abstract: As concerns over environmental contamination and rapid consumption of fossil fuels continue to grow, it is important for energy storage technology to reduce the intermittency of clean and renewable energy sources. So far, lithium-ion batteries (LIBs), commercialized by SONY corporation in 1991, have been the most widely used rechargeable batteries for various energy storage devices. Due to the ever-increasing demand for lithium employment in mobile electronic devices and electric vehicles (EVs), the price of Li resources is rising year by year. It is well known that worthwhile lithium resources are only found in a few countries (mainly in South America). Recently, sodium-ion batteries (SIBs) have been regarded as promising alternatives to LIBs for future large-scale energy storage systems (ESSs) owing to their low cost, abundant reservoirs of Na resources and similar characteristics to LIBs. Developing high-performance cathode materials is crucial to realize the commercialization of the SIB technology. Sodium transition metal oxides (NaxTMO2), especially for Ni–Mn-based compounds, have received significant attention thanks to their high specific capacity and operating voltage. Normally, layered NaxTMO2 materials have two types of crystal structures: P2 and O3, according to the surrounding Na environment and the number of unique oxygen layers occupied within the lattice. Compared with the O3 phase, the P2-type structure has open diffusion channels for the transport of Na+ and relatively rare phase transitions, which make P2-type Na0.67[Ni, Mn]O2 (NNMO) one of the most promising cathodes for SIBs. However, NNMO materials generally suffer from irreversible P2–O2 phase transformations, Na+/vacancy ordering transitions and Jahn–Teller distortion of Mn(III)O6 octahedra, leading to structural deterioration and performance degradation during the charge and discharge processes. In detail, the P2–O2 phase transition inevitably causes significant lattice volume change (~20%) and even the formation of cracks, resulting in the stripping of active substances from the collector and serious capacity decay during cycling. The Na+/vacancy ordering in NNMO causes the multi-step two-phase reactions, which may increase the activation energy barrier for Na+ hops between adjacent prismatic sites, consequently hindering Na+ diffusion. Additionally, the lattice distortion and P2-P’2 phase transition induced by the Jahn–Teller effect also impede Na+ migration, leading to the sluggish kinetics of Na+ (de)intercalation. In this review, the recent progress on NNMO cathodes is summarized, including ion-doping, surface modification and composite structure. The comprehensive and integrated explanation of the structure–function–performance relationship of these optimized cathodes is further presented. Moreover, the existing challenges of NNMO and possible remedies are also discussed. It is expected that this review can provide new insights into the commercialization of NNMO for SIBs.
-
图 2 (a) 总荧光产额(TFY)模式下Ni-L3边以及拟合曲线; (b) P2-Na2/3Mn2/3Ni1/3O2材料的非弹性散射共振光谱(mRIXS)图像(关键的氧的氧化还原特征由红色箭头指出)[17]; (c)通过对(b)中的两条虚线之间的区域进行积分提取出的非弹性散射共振光谱-超特定荧光产率(mRIXS-sPFY)光谱[17]; (d) mRIXS-sPFY光谱531 eV处峰面积[17]; (e) 通过对Ni、O氧化还原以及不可逆反应独立量化来解析总电化学容量[17]; (f) P2-Na2/3Mn2/3Ni1/3O2电极的PDOS图[9]
Figure 2. (a) Ni-L3 edge TFY (solid) and fitted curves[17]; (b) corresponding mRIXS images of Na2/3Ni1/3Mn2/3O2 electrode, the key oxygen redox features are indicated by the red arrows[17]; (c) mRIXS-sPEY spectra extracted from mRIXS by integrating the characteristic 523.7 eV emission energy range, as indicated by the two horizontal dashed lines in Fig.2 (b)[17]; (d) mRIXS-sPFY 531 eV peak areas[17]; (e) decipher the total electrochemical capacity by independent quantifications of Ni, Mn and O redox [17]; (f) PDOS of Na2/3Ni1/3Mn2/3O2 electrode[9]
图 3 (a) P2相高压相变示意图[18]; (b)Na2/3Mn2/3Ni1/3O2材料首圈充放电过程中的晶体结构演变[19]; (c) Na2/3Mn2/3Ni1/3O2材料不同电压区间内循环50周后SEM图(从左至右依次为原始样品、2~3.8 V、2.0~4.1 V、2.0~4.25 V、2.0~4.5 V)[20]
Figure 3. (a) Schematic of P2 phase in the high voltage region;[18] (b) Na2/3Mn2/3Ni1/3O2 phase transition in the initial charge/discharge process[19]; (c) SEM images of Na2/3Mn2/3Ni1/3O2 electrode after 50 cycles in different voltage ranges (From the left to right: pristine sample, 2.0–3.8 V, 2.0–4.1 V, 2.0–4.25 V, 2.0–4.5 V)[20]
图 5 (a) Mn3+的八面体构型示意图; (b) Mn3+的Jahn–Teller扭曲示意图[23]; (c) Na0.62Ni1/4Mn3/4O2材料在1.5~4.5 V电压区间内的原位XRD图谱[24]
Figure 5. (a) Schematic of Mn3+ octahedral configuration; (b) schematic of Jahn–Teller distortion for Mn3+[23]; (c) in-situ XRD patterns of Na0.62Ni1/4Mn3/4O2 electrode during the charge/discharge processes in the voltage range of 1.5–4.5 V[24]
图 6 (a) Mg2+进入Na0.70Ni0.40Mn0.60O2材料AM层起到支柱作用示意图[29]; (b) P2-Na2/3Ni1/3Mn2/3O2和P2-Na2/3Ni1/3Mn1/3Ti1/3O2材料中Nae和Naf的能量差计算结果[22]; (c) P2相结构中Li+可以在TM层与AM层之间可逆迁移示意图; (d) Na0.66IyNizMn1–y–zO2 (0.60 ≤ x ≤ 0.80, 0 ≤ y ≤ 0.17, 0.20 ≤ z ≤0.33)材料的比容量与循环稳定性性能对比[32]
Figure 6. (a) Schematic diagram of the pillar effect of Mg2+ for Na0.70Ni0.4Mn0.60O2 electrode[29]; (b) calculated energy difference between the Nae and Naf sites for P2-Na2/3Ni1/3Mn2/3O2 and P2-Na2/3Ni1/3Mn1/3Ti1/3O2 eletrodes[22]; (c) reversible migration of Li+ between the TM and AM layers in P2 phase; (d) comparison of capacity and cycle stability of Na0.66IyNizMn1–y–zO2 (0.60 ≤ x ≤ 0.80, 0 ≤ y ≤ 0.17, 0.20 ≤ z ≤0.33) substituted with different inert cations[32]
图 7 (a) Cu2+掺杂作用机制[37]; (b) Co3+离子掺杂作用机制[39]; (c) Na+在Na2/3Ni1/3Mn2/3O2、Na2/3Mn1/3Co2/3O2以及Na2/3Mn1/2Ni1/6Co1/3O2材料内的分布状态[40]
Figure 7. (a) Mechanisms of Cu-doping[37]; (b) mechanisms of Co-doping[39]; (c) distribution of Na+ in Na2/3Ni1/3Mn2/3O2, Na2/3Mn1/3Co2/3O2, and Na2/3Mn1/2Ni1/6Co1/3O2 electrodes[40]
图 8 (a) Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2在5C电流密度下的长循环稳定性[41]; (b) [Na0.67Zn0.05]Ni0.18Cu0.1Mn0.67O2材料的在[–220]方向的ABF-STEM图; (c) [Na0.67Zn0.05]Ni0.18Cu0.1Mn0.67O2材料在10 C的电流密度下的长循环稳定性[42]; (d) P2-Na0.75Ca0.04[Li0.1Ni0.2Mn0.67]O2材料在2.0~4.3 V的电压区间内不同循环圈数的放电dQ/dV曲线; (e) P2-Na0.75Ca0.04[Li0.1Ni0.2Mn0.67]O2材料在2.0~4.0 V的电压区间内不同循环圈数的放电dQ/dV曲线; (f) P2-Na0.75Ca0.04[Li0.1Ni0.2Mn0.67]O2材料在2.0~4.3 V的电压区间内循环1周、10周、20周、30周以及50周后Mn的K边吸收光谱[43]
Figure 8. (a) Long-term cycling stability of Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 electrode at 5C[41]; (b) ABF-STEM image of [Na0.67Zn0.05]Ni0.18Cu0.1Mn0.67O2 electrode viewed from [–220] axis; (c) long-term cycling stability of [Na0.67Zn0.05]Ni0.18Cu0.1Mn0.67O2 electrode at 10C[42]; (d) discharge dQ/dV curves within 2.0–4.3 V for P2-Na0.75Ca0.04[Li0.1Ni0.2Mn0.67]O2 electrode; (e) discharge dQ/dV curves within 2.0–4.0 V for P2-Na0.75Ca0.04[Li0.1Ni0.2Mn0.67]O2 electrode; (f) Mn K-edge XAS results collected at the 2 V discharged state after the 1st, 10th, 20th, 30th, and 50th cycles within 2.0–4.3 V for P2-Na0.75Ca0.04[Li0.1Ni0.2Mn0.67]O2 electrode[43]
图 10 (a) Ca2+和空位掺杂的Na0.66Ni0.33Mn0.67O2电极晶体结构示意图; (b) P2-Na0.76Ca0.05[Ni0.23□0.08Mn0.69]O2正极在不同电流密度下的循环稳定性[46]
Figure 10. (a) Schematic of the crystal structure of Ca2+ and vacancy co-doped Na0.66Ni0.33Mn0.67O2 electrode; (b) cycling stability of P2-Na0.76Ca0.05[Ni0.23□0.08Mn0.69]O2 cathode at different current densities[46]
图 11 (a)采用熔体–浸渍工艺在Na2/3[Ni1/3Mn2/3]O2材料表面构筑NaPO3包覆层示意图[49]; (b) Na0.66Ni0.26Zn0.07Mn0.67O2(NNZM)和Na0.66Ni0.26Zn0.07Mn0.67O2/0.06ZnO (NNZM/0.06ZnO)电极表面CEI膜对比示意图;(c)NNZM和NNZM/0.06ZnO在100 mA·g–1的电流密度下的循环性能[52]
Figure 11. (a) Schematic of melt–impregnation of NaPO3 coating on Na2/3[Ni1/3Mn2/3]O2[49]; (b) schematic of the CEI films formed on the Na0.66Ni0.26Zn0.07Mn0.67O2(NNZM) and Na0.66Ni0.26Zn0.07Mn0.67O2/0.06ZnO (NNZM/0.06ZnO) particles; (c) cycling performance of NNZM and NNZM/0.06ZnO at 100 mA·g–1[52]
图 12 (a) P2-Na2/3Ni1/3Mn0.57Ti0.1O2、(b) O3-NaNi1/3Fe1/3Mn1/3O2以及(c) P2/O3-Na0.754Ni0.326Mn0.501Fe0.098Ti0.07O2材料在钠离子脱嵌过程中的晶体结构变化示意图[53]; (d) P2-Na0.7Ni0.2Cu0.1Fe0.2Mn0.5O2–δ,O3-Na0.8Ni0.2Cu0.1Fe0.2Mn0.5O2–δ以及P2/O3-Na0.7Ni0.2Cu0.1Fe0.2Mn0.5O2–δ电极在2.0~4.05 V电压区间内的倍率性能; (e) P2-Na0.7Ni0.2Cu0.1Fe0.2Mn0.5O2–δ,O3-Na0.8Ni0.2Cu0.1Fe0.2Mn0.5O2–δ以及P2/O3-Na0.7Ni0.2Cu0.1Fe0.2Mn0.5O2–δ电极在2.0~4.05 V电压区间内及240 mA·g–1下的循环稳定性[54]
Figure 12. Schematic of structural changes of (a) P2-Na2/3Ni1/3Mn0.57Ti0.1O2, (b) O3-NaNi1/3Fe1/3Mn1/3O2 and (c) P2/O3-Na0.754Ni0.326Mn0.501Fe0.098Ti0.07O2 during Na (de)sodiation[53]; (d) rate capabilities of P2-Na0.7Ni0.2Cu0.1Fe0.2Mn0.5O2–δ, O3-Na0.8Ni0.2Cu0.1Fe0.2Mn0.5O2–δ and P2/O3-Na0.7Ni0.2Cu0.1Fe0.2Mn0.5O2–δ electrode tested within 2.0–4.05 V, (e) cycling performances of P2-Na0.7Ni0.2Cu0.1Fe0.2Mn0.5O2–δ, O3-Na0.8Ni0.2Cu0.1Fe0.2Mn0.5O2–δ and P2/O3-Na0.7Ni0.2Cu0.1Fe0.2Mn0.5O2–δ electrode tested at a rate of 240 mA·g–1 within 2.0–4.05 V[54]
表 1 不同元素掺杂对P2-Na0.67[Ni, Mn]O2材料性能提升对比
Table 1. Comparison of performance of P2-Na0.67[Ni, Mn]O2 materials improved by doping different elements
Materials Initial capacity/(mA·h·g–1) Rate performance/
(mA·h·g–1)Cycle performance/(mA·h·g–1) References Na2/3Ni1/3Mn2/3O2 167 (12 mA·g–1) (2.0–4.4 V) 30 (2C) 167 (12 mA·g–1) 30% (100 cycles) 7 Na0.62Ni1/4Mn3/4O2 185 (15 mA·g–1) (1.5–4.3 V) 120(500 mA·g–1) 185 (15 mA·g–1) 84% (50 cycles) 24 Na0.67Mn0.67Ni0.28Mg0.05O2 123 (0.1C) (2.5–4.35 V) — 123 (0.1C) 85% (50 cycles) 27 Na0.67Mg0.05[Mn0.60Ni0.20Mg0.15]O2 130 (0.2C) (1.5–4.2 V)
78 (1C) (2.5–4.2 V)57 (25C) 78 (1C) 79% (1000 cycles)
130 (0.2C) 73% (180 cycles)29 Na0.67Ni0.23Mn0.67Mg0.1O2 117 (0.1C) (2.5–4.4 V) 60 (5C) 117 (0.1C) 95.3%(50 cycles)
70 (5C) 90.9% (1000 cycles)30 Na2/3Ni1/3Mn1/2Ti1/6O2 127 (12.1 mA·g–1) (2.5–4.5 V) 90 (2C) 127 (12.1 mA·g–1 ) 90.5% (20 cycles) 31 Na2/3Ni1/3Mn1/3Ti1/3O2 90 (0.1C) (2.5–4.15 V) 70 (20C) 87 (1 C) 83.9% (500 cycles) 22 Na0.80Li0.12Ni0.22Mn0.66O2 118 (0.1C) (2.0–4.4 V) 70.8 (5C) 118 (0.1C) 91% (50 cycles) 33 Na0.67Mn0.6Ni0.2Li0.2O2 100 (0.1C) (2.0–4.6 V) 70 (2C) 110 (0.1C) 102% (100 cycles) 34 Na0.66Ni0.26Mn0.67Zn0.07O2 127 (12 mA·g–1) (2.2–4.3 V) — 127 (12 mA·g–1) 93.1% (10 cycles) 13 Na0.6Ni0.22Al0.11Mn0.66O2 252 (20 mA·g–1)(1.5–4.6 V) 140 (5 C) 252 (20 mA·g–1) 80% (50 cycles) 32 Na0.67Ni0.1Cu0.2Mn0.7O2 120 (0.1C) (2.0–4.5 V) 55 (20C) 120 (0.1C) 67% (100 cycles) 37 Na0.7Mn0.7Ni0.2Co0.1O2 160 (50 mA·g–1) (1.5–4.0 V) 75 (500 mA·g–1) 100 (1 A·g–1) 87% (300 cycles) 39 Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 87.9 (0.5C) (2.5–4.15 V) 60 (30C) 80 (5C) 81.4% (500 cycles) 41 [Na0.67Zn0.05]Ni0.18Cu0.1Mn0.67O2 100 (0.1C) (2.5–4.4 V) 60 (10C) 60 (10C) 80.6% (2000 cycles) 42 Na0.75Ca0.04[Li0.1Ni0.2Mn0.67]O2 130 (0.1 V) (2.0–4.3 V) 68.8 (20C) 80 (10C) 87.7% (500 cycles) 43 Na0.62Mn0.67Ni0.23Cu0.05Mg0.03Ti0.06O2 148.2 (0.1C) (2.0–4.3 V) 80 (10C) 120 (1C) 87% (500 cycles)
78.6 (10C) 75% (2000 cycles)44 Na0.7Li0.03Mg0.03Ni0.27Mn0.6Ti0.07O2 135 (0.1C) (2.2–4.4 V) 110 (4C) 116.8 (2C) 82% (200 cycles) 45 Na0.76Ca0.05[Ni0.23□0.08Mn0.69]O2 153.9 (0.1C) (2.0–4.3 V) 74.6 (20C) 95 (5C) 75.3% (200 cycles) 46 -
参考文献
[1] Liu Y K, Li J, Shen Q Y, et al. Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials. eScience, 2022, 2(1): 10 doi: 10.1016/j.esci.2021.12.008 [2] Hou Y N, Li X F, Liu W, et al. ALD derived Fe3+- doping toward high performance P2-Na0.75Ni0. 2Co0. 2Mn0. 6O2 cathode material for sodium ion batteries. Mater Today Energy, 2019, 14: 100353 doi: 10.1016/j.mtener.2019.100353 [3] Liu Z J, Zheng F F, Xiong W W, et al. Strategies to improve electrochemical performances of pristine metal-organic frameworks-based electrodes for lithium/sodium-ion batteries. SmartMat, 2021, 2(4): 488 doi: 10.1002/smm2.1064 [4] Niu Y B, Yin Y X, Wang W P, et al. In situ copolymerizated gel polymer electrolyte with cross-linked network for sodium-ion batteries. CCS Chem, 2020, 2(1): 589 doi: 10.31635/ccschem.019.201900055 [5] Xu L, Li H, Du T, et al. An all Prussian blue analog-based aprotic sodium-ion battery. Battery Energy, 2022, 1(2): 20210003 doi: 10.1002/bte2.20210003 [6] Chu S Y, Guo S H, Zhou H S. Advanced cobalt-free cathode materials for sodium-ion batteries. Chem Soc Rev, 2021, 50(23): 13189 doi: 10.1039/D1CS00442E [7] Zuo W H, Qiu J M, Liu X S, et al. The stability of P2-layered sodium transition metal oxides in ambient atmospheres. Nat Commun, 2020, 11(1): 3544 doi: 10.1038/s41467-020-17290-6 [8] Wang W H, Zhang J L, Li C L, et al. P2-Na2/3Ni2/3Te1/3O2 cathode for Na-ion batteries with high voltage and excellent stability. Energy & Environ Materials, https://doi.org/10.1002/eem2.12314 [9] Zuo W H, Ren F C, Li Q H, et al. Insights of the anionic redox in P2-Na0.67Ni0. 33Mn0. 67O2. Nano Energy, 2020, 78: 105285 doi: 10.1016/j.nanoen.2020.105285 [10] Paulsen J M, Dahn J R. O2-type Li2/3[Ni1/3Mn2/3]O2: A new layered cathode material for rechargeable lithium batteries II. structure,composition,and properties. J Electrochem Soc, 2000, 147(7): 2478 [11] Paulsen J M, Thomas C L, Dahn J R. O2 Structure Li2/3[Ni1/3Mn2/3] O2: A new layered cathode material for rechargeable lithium batteries. I. Electrochemical properties. J Electrochem Soc, 2000, 147(3): 861 doi: 10.1149/1.1393283 [12] Liu Q N, Hu Z, Chen M Z, et al. P2-type Na2/3Ni1/3Mn2/3O2 as a cathode material with high-rate and long-life for sodium ion storage. J Mater Chem A, 2019, 7(15): 9215 doi: 10.1039/C8TA11927A [13] Wu X H, Xu G L, Zhong G M, et al. Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries. ACS Appl Mater Interfaces, 2016, 8(34): 22227 doi: 10.1021/acsami.6b06701 [14] Armstrong A R, Holzapfel M, Novák P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc, 2006, 128(26): 8694 doi: 10.1021/ja062027+ [15] Maitra U, House R A, Somerville J W, et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat Chem, 2018, 10(3): 288 doi: 10.1038/nchem.2923 [16] Zuo W H, Qiu J M, Liu X S, et al. Highly-stable P2-Na0.67MnO2 electrode enabled by lattice tailoring and surface engineering. Energy Storage Mater, 2020, 26: 503 doi: 10.1016/j.ensm.2019.11.024 [17] Dai K H, Mao J, Zhuo Z Q, et al. Negligible voltage hysteresis with strong anionic redox in conventional battery electrode. Nano Energy, 2020, 74: 104831 doi: 10.1016/j.nanoen.2020.104831 [18] Kubota K, Kumakura S, Yoda Y, et al. Electrochemistry and solid-state chemistry of NaMeO2 (Me=3d transition metals). Adv Energy Mater, 2018, 8(17): 1703415 doi: 10.1002/aenm.201703415 [19] Lu Z H, Dahn J R. In situ X-Ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2. J Electrochem Soc, 2001, 148(11): A1225 doi: 10.1149/1.1407247 [20] Wang K, Yan P F, Sui M L. Phase transition induced cracking plaguing layered cathode for sodium-ion battery. Nano Energy, 2018, 54: 148 doi: 10.1016/j.nanoen.2018.09.073 [21] Lee D H, Xu J, Meng Y S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys, 2013, 15(9): 3304 doi: 10.1039/c2cp44467d [22] Wang P F, Yao H R, Liu X Y, et al. Na+/vacancy disordering promises high-rate Na-ion batteries. Sci Adv, 2018, 4(3): eaar6018 doi: 10.1126/sciadv.aar6018 [23] Ortiz-Vitoriano N, Drewett N E, Gonzalo E, et al. High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries. Energy Environ Sci, 2017, 10(5): 1051 doi: 10.1039/C7EE00566K [24] Gutierrez A, Dose W M, Borkiewicz O, et al. On disrupting the Na+-ion/vacancy ordering in P2-type sodium-manganese-nickel oxide cathodes for Na+-ion batteries. J Phys Chem C, 2018, 122(41): 23251 doi: 10.1021/acs.jpcc.8b05537 [25] Wang C C, Liu L J, Zhao S, et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nat Commun, 2021, 12(1): 2256 doi: 10.1038/s41467-021-22523-3 [26] Liu X S, Zuo W H, Zheng B Z, et al. P2-Na0.67Al x Mn 1–x O2:Cost-effective, stable and high-rate sodium electrodes by suppressing phase transitions and enhancing sodium cation mobility. Angew Chem Int Ed, 2019, 58(50): 18086 doi: 10.1002/anie.201911698 [27] Wang P F, You Y, Yin Y X, et al. Suppressing the P2–O2 phase transition of Na0.67 Mn0. 67 Ni0. 33 O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem Int Ed Engl, 2016, 55(26): 7445 doi: 10.1002/anie.201602202 [28] Wang K, Wan H, Yan P F, et al. Dopant segregation boosting high-voltage cyclability of layered cathode for sodium ion batteries. Adv Mater, 2019, 31(46): e1904816 doi: 10.1002/adma.201904816 [29] Wang Q C, Meng J K, Yue X Y, et al. Tuning P2-structured cathode material by Na-site Mg substitution for Na-ion batteries. J Am Chem Soc, 2019, 141(2): 840 doi: 10.1021/jacs.8b08638 [30] Peng B, Sun Z H, Zhao L P, et al. Dual-manipulation on P2-Na0.67Ni0. 33Mn0. 67O2 layered cathode toward sodium-ion full cell with record operating voltage beyond 3. 5 V. Energy Storage Mater, 2021, 35: 620 doi: 10.1016/j.ensm.2020.11.037 [31] Yoshida H, Yabuuchi N, Kubota K, et al. P2-type Na2/3Ni1/3Mn2/3–xTixO2 as a new positive electrode for higher energy Na-ion batteries. Chem Commun, 2014, 50(28): 3677 doi: 10.1039/C3CC49856E [32] Zhang J L, Wang W H, Wang W, et al. Comprehensive review of P2-type Na2/3Ni1/3Mn2/3O2, a potential cathode for practical application of Na-ion batteries. ACS Appl Mater Interfaces, 2019, 11(25): 22051 doi: 10.1021/acsami.9b03937 [33] Xu J, Lee D H, Clément R J, et al. Identifying the critical role of Li substitution in P2-Nax[LiyNizMn1–y–z]O2 (0<x, y, z<1) intercalation cathode materials for high-energy Na-ion batteries. Chem Mater, 2014, 26(2): 1260 doi: 10.1021/cm403855t [34] Yang L T, Kuo L Y, López del Amo J M, et al. Structural aspects of P2-type Na0.67Mn0.6Ni0.2Li0.2O2 (MNL) stabilization by lithium defects as a cathode material for sodium-ion batteries. Adv Funct Mater, 2021, 31(38): 2102939 doi: 10.1002/adfm.202102939 [35] Hasa I, Passerini S, Hassoun J. Toward high energy density cathode materials for sodium-ion batteries: Investigating the beneficial effect of aluminum doping on the P2-type structure. J Mater Chem A, 2017, 5(9): 4467 doi: 10.1039/C6TA08667E [36] Yang L, Luo S H, Wang Y F, et al. Cu-doped layered P2-type Na0.67Ni0.33–xCuxMn0.67O2 cathode electrode material with enhanced electrochemical performance for sodium-ion batteries. Chem Eng J, 2021, 404: 126578 doi: 10.1016/j.cej.2020.126578 [37] Zheng L T, Li J R, Obrovac M N. Crystal structures and electrochemical performance of air-stable Na2/3Ni1/3–xCuxMn2/3O2 in sodium cells. Chem Mater, 2017, 29(4): 1623 doi: 10.1021/acs.chemmater.6b04769 [38] Wang L, Sun Y G, Hu L L, et al. Copper-substituted Na0.67Ni0.3−xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition. J Mater Chem A, 2017, 5(18): 8752 doi: 10.1039/C7TA00880E [39] Li Z Y, Zhang J C, Gao R, et al. Unveiling the role of Co in improving the high-rate capability and cycling performance of layered Na0.7Mn0. 7Ni0. 3–xCoxO2 cathode materials for sodium-ion batteries. ACS Appl Mater Interfaces, 2016, 8(24): 15439 doi: 10.1021/acsami.6b04073 [40] Liu Z B, Shen J D, Feng S H, et al. Ultralow volume change of P2-type layered oxide cathode for Na-ion batteries with controlled phase transition by regulating distribution of Na. Angew Chem Int Ed, 2021, 60(38): 20960 doi: 10.1002/anie.202108109 [41] Xiao Y, Zhu Y F, Yao H R, et al. A stable layered oxide cathode material for high-performance sodium-ion battery. Adv Energy Mater, 2019, 9(19): 1803978 doi: 10.1002/aenm.201803978 [42] Peng B, Chen Y X, Wang F, et al. Unusual site-selective doping in layered cathode strengthens electrostatic cohesion of alkali-metal layer for practicable sodium-ion full cell. Adv Mater, 2022, 34(6): e2103210 doi: 10.1002/adma.202103210 [43] Jin J T, Liu Y C, Shen Q Y, et al. Unveiling the complementary manganese and oxygen redox chemistry for stabilizing the sodium-ion storage behaviors of layered oxide cathodes. Adv Funct Mater, 2022, 32(29): 2203424 doi: 10.1002/adfm.202203424 [44] Fu F, Liu X, Fu X G, et al. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nat Commun, 2022, 13: 2826 doi: 10.1038/s41467-022-30113-0 [45] Cheng Z W, Zhao B, Guo Y J, et al. Mitigating the large-volume phase transition of P2-type cathodes by synergetic effect of multiple ions for improved sodium-ion batteries. Adv Energy Mater, 2022, 12(14): 2103461 doi: 10.1002/aenm.202103461 [46] Shen Q Y, Liu Y C, Zhao X D, et al. Transition-metal vacancy manufacturing and sodium-site doping enable a high-performance layered oxide cathode through cationic and anionic redox chemistry. Adv Funct Mater, 2021, 31(51): 2106923 doi: 10.1002/adfm.202106923 [47] Mu L Q, Rahman M M, Zhang Y, et al. Surface transformation by a “cocktail” solvent enables stable cathode materials for sodium ion batteries. J Mater Chem A, 2018, 6(6): 2758 doi: 10.1039/C7TA08410B [48] Dang R B, Li Q, Chen M M, et al. CuO-Coated and Cu2+-doped Co-modified P2-type Na2/3[Ni1/3Mn2/3]O2 for sodium-ion batteries. Phys Chem Chem Phys, 2019, 21(1): 314 doi: 10.1039/C8CP06248J [49] Jo J H, Choi J U, Konarov A, et al. Sodium-ion batteries: Building effective layered cathode materials with long-term cycling by modifying the surface via sodium phosphate. Adv Funct Mater, 2018, 28(14): 1705968 doi: 10.1002/adfm.201705968 [50] Xu K, Yan M M, Chang Y X, et al. Surface optimized P2-Na2/3Ni1/3Mn2/3O2 cathode material via conductive Al-doped ZnO for boosting sodium storage. Electrochimica Acta, 2022, 419: 140394 doi: 10.1016/j.electacta.2022.140394 [51] Xue L, Bao S, Yan L, et al. MgO-coated layered cathode oxide with enhanced stability for sodium-ion batteries. Front Energy Res, 2022, 10: 847818 doi: 10.3389/fenrg.2022.847818 [52] Zhang F P, Liao J H, Xu L, et al. Stabilizing P2-type Ni–Mn oxides as high-voltage cathodes by a doping-integrated coating strategy based on zinc for sodium-ion batteries. ACS Appl Mater Interfaces, 2021, 13(34): 40695 doi: 10.1021/acsami.1c12062 [53] Cheng Z W, Fan X Y, Yu L Z, et al. A rational biphasic tailoring strategy enabling high-performance layered cathodes for sodium-ion batteries. Angew Chem Int Ed, 2022, 61(19): e202117728 [54] Gao X, Liu H Q, Chen H Y, et al. Cationic-potential tuned biphasic layered cathodes for stable desodiation/sodiation. Sci Bull, 2022, 67(15): 1589 doi: 10.1016/j.scib.2022.06.024 -