• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微型塌落筒实验的充填料浆屈服应力表征

王勇 王林奇 曹晨 刘伟

王勇, 王林奇, 曹晨, 刘伟. 基于微型塌落筒实验的充填料浆屈服应力表征[J]. 工程科学学报, 2023, 45(8): 1316-1323. doi: 10.13374/j.issn2095-9389.2022.11.04.003
引用本文: 王勇, 王林奇, 曹晨, 刘伟. 基于微型塌落筒实验的充填料浆屈服应力表征[J]. 工程科学学报, 2023, 45(8): 1316-1323. doi: 10.13374/j.issn2095-9389.2022.11.04.003
WANG Yong, WANG Lin-qi, CAO Chen, LIU Wei. Characterization of filling slurry yield stress based on a mini-slump cone test[J]. Chinese Journal of Engineering, 2023, 45(8): 1316-1323. doi: 10.13374/j.issn2095-9389.2022.11.04.003
Citation: WANG Yong, WANG Lin-qi, CAO Chen, LIU Wei. Characterization of filling slurry yield stress based on a mini-slump cone test[J]. Chinese Journal of Engineering, 2023, 45(8): 1316-1323. doi: 10.13374/j.issn2095-9389.2022.11.04.003

基于微型塌落筒实验的充填料浆屈服应力表征

doi: 10.13374/j.issn2095-9389.2022.11.04.003
基金项目: 国家自然科学基金资助项目(52130404);中央高校基本科研业务费资助项目(FRF-IDRY-GD22-004,FRF-TP-19-002C2Z);青年教师国际交流成长计划资助项目(QNXM20210002)
详细信息
    通讯作者:

    E-mail: m202120041@xs.ustb.edu.cn

  • 中图分类号: TD853

Characterization of filling slurry yield stress based on a mini-slump cone test

More Information
  • 摘要: 充填料浆的管道输送是充填采矿法的一个重要环节,而充填料浆的流变参数是评价充填料浆管输特性的重要指标,目前主要采用流变仪进行测定,但矿山现场通常不具备流变实验条件,主要通过塌落度实验来评价充填料浆的流动性能。本文采用微型塌落筒进行不同质量分数、灰砂比的充填料浆塌落度实验,建立微型塌落筒扩展度与屈服应力之间的解析模型,根据料浆停止流动后的形态得到简化计算模型,基于简化模型理论计算料浆的屈服应力,并将理论值与流变仪测试同等配比条件下得到的屈服应力实验值进行对比分析,同时通过双因素方差分析研究了不同质量分数、灰砂比对充填料浆扩展度的影响规律。结果表明,扩展度主要受质量分数的影响,灰砂比对其影响不显著,充填料浆的屈服应力随质量分数的增大而增大。在质量分数较低时,理论值与实验值的相对误差范围较大,二者的相对误差在25%以内,平均误差为16.79%;随着质量分数增大,误差逐渐减小至15%以内,平均误差为8.81%。综合考虑质量分数的影响,提出基于质量分数的修正系数,修正后的屈服应力理论值与实验值的相对误差降至10%以内,平均误差为3.54%。本研究微型塌落筒实验较传统塌落度实验不仅节省实验用料和劳动强度,还可有效表征料浆屈服应力,对于矿山充填料的流动性能评价具有实际指导意义。

     

  • 图  1  分级尾砂粒级组成分布曲线

    Figure  1.  Particle-size distribution of graded tailings

    图  2  微型塌落筒尺寸示意图

    Figure  2.  Schematic of the mini-slump mold size

    图  3  不同配比尾砂料浆扩展度演化规律. (a)扩展度随不同质量分数的变化;(b)扩展度随不同灰砂比的变化

    Figure  3.  Evolution law of the spread of tailings slurry with different filling ratios: (a) spread change with different mass fractions; (b) spread change with different cement–tailings ratios

    图  4  微型塌落度实验充填料受力分析图(图中R0为上口半径,RH为下口半径,H为高度,R1为未变形部分下口半径,h0为未变形部分高度,h1为已屈服部分高度,s为塌落度,τy为料浆的屈服应力). (a)初始应力分析;(b)最终应力分析;(c)料浆最终扩展度形态

    Figure  4.  Mechanical analysis diagram of the filling slurry in a mini-slump cone test (in the figure, R0 is the upper radius, RH is the lower radius, H is the height, R1 is the radius of the lower plane of the undeformed part, h0 is the height of the undeformed part, h1 is the height of the yielded part, s is the slump, and τy is the yield stress of filling slurry): (a) initial stress analysis; (b) final stress analysis; (c) final spread shape of the slurry

    表  1  扩展度与流变参数测试结果

    Table  1.   Results of the spread and rheological parameters test

    Mass fraction/%Cement–tailings ratioSpread/cmYield stress/PaViscosity/
    (Pa·s)
    681∶435.88.820.2782
    681∶836.158.320.2769
    681∶1235.89.010.2583
    681∶1535.69.500.2535
    681∶1835.68.460.2804
    701∶433.315.190.2435
    701∶833.414.290.2687
    701∶1233.614.830.2940
    701∶1533.513.560.3008
    701∶1833.412.890.2882
    721∶428.526.590.3337
    721∶829.324.540.4039
    721∶1229.823.660.5445
    721∶153021.340.4652
    721∶1830.122.460.4523
    下载: 导出CSV

    表  2  方差分析结果

    Table  2.   Results of variance analysis

    SourceType III sum of squaresDfMean squareFSig.
    Mass fraction98.983249.492278.4330.000
    Cement–tailings ratio0.62440.1560.8780.518
    Error1.42280.178
    Total101.02914
    下载: 导出CSV

    表  3  解析模型计算屈服应力与测试屈服应力对比

    Table  3.   Comparison of yield stress calculated by an analytical model and measured yield stress

    Mass fraction/%Cement–tailings ratioSpread/cmTest yield stress/PaCalculation yield stress/PaAbsolute errorRelative error/%
    681∶435.88.8210.2161.395815.83
    681∶836.158.329.8921.575618.95
    681∶1235.89.0110.2161.2073513.4
    681∶1535.69.5010.5461.0468511.02
    681∶1835.68.4610.5462.090624.73
    701∶433.315.1914.152−1.04156.85
    701∶833.414.2914.029−0.26251.84
    701∶1233.614.8313.897−0.93356.3
    701∶1533.513.5613.7170.161.18
    701∶1833.412.8914.0291.1388.83
    721∶428.526.5922.532−4.05615.26
    721∶829.324.5420.919−3.6214.75
    721∶1229.823.6620.506−3.155513.34
    721∶153021.3419.892−1.44356.76
    721∶1830.122.4619.529−2.9313.04
    下载: 导出CSV

    表  4  修正后屈服应力对比

    Table  4.   Comparison of yield stress after correction

    Mass fraction/%Cement–tailings ratioTest yield stress/PaCorrected yield stress/PaCorrecting errorsCorrected error rate/%
    681∶48.828.8140.00620.07
    681∶88.328.535−0.21862.63
    681∶129.018.8140.19462.16
    681∶159.509.0990.40024.21
    681∶188.469.099−0.64367.61
    701∶415.1914.2510.94256.2
    701∶814.2914.1270.16451.15
    701∶1214.8313.9940.83655.64
    701∶1513.5613.813−0.25601.89
    701∶1812.8914.127−1.23609.59
    721∶426.5925.9390.64902.44
    721∶824.5424.0820.45701.86
    721∶1223.6623.6070.05450.23
    721∶1521.3422.9−1.56457.33
    721∶1822.4622.482−0.02300.1
    下载: 导出CSV
  • [1] Wu A X, Wang H J. Theory and Technology of Metal Ore Paste Filling. Beijing: Science Press, 2015

    吴爱祥, 王洪江. 金属矿膏体充填理论与技术. 北京: 科学出版社, 2015
    [2] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517

    吴爱祥, 杨莹, 程海勇, 等. 中国膏体技术发展现状与趋势. 工程科学学报, 2018, 40(5):517
    [3] Aldhafeeri Z, Fall M. Time and damage induced changes in the chemical reactivity of cemented paste backfill. J Environ Chem Eng, 2016, 4(4): 4038 doi: 10.1016/j.jece.2016.09.006
    [4] Ghirian A, Fall M. Coupled thermo-hydro-mechanical–chemical behaviour of cemented paste backfill in column experiments. Part I: Physical, hydraulic and thermal processes and characteristics. Eng Geol, 2013, 164: 195
    [5] Wu A X, Li H, Cheng H Y, et al. Status and prospects of research on the rheology of paste backfill using unclassified tailings (Part 2): Rheological measurement and prospects. Chin J Eng, 2021, 43(4): 451

    吴爱祥, 李红, 程海勇, 等. 全尾砂膏体流变学研究现状与展望(下): 流变测量与展望. 工程科学学报, 2021, 43(4):451
    [6] Jiang H Q, Fall M. Yield stress and strength of saline cemented tailings in sub-zero environments: Portland cement paste backfill. Int J Miner Process, 2017, 160: 68 doi: 10.1016/j.minpro.2017.01.010
    [7] Deng D Q, Gao Y T, Wu S C. Liquidity detection based on the slump testing of coarse aggregate filling material. J Beijing Univ Civ Eng Archit, 2009, 25(1): 30

    邓代强, 高永涛, 吴顺川. 基于坍落度测试的粗骨料充填料浆流动性检验. 北京建筑工程学院学报, 2009, 25(1):30
    [8] Saak A W, Jennings H M, Shah S P. A generalized approach for the determination of yield stress by slump and slump flow. Cem Concr Res, 2004, 34(3): 363 doi: 10.1016/j.cemconres.2003.08.005
    [9] Roussel N. Correlation between yield stress and slump: Comparison between numerical simulations and concrete rheometers results. Mater Struct, 2006, 39(4): 501
    [10] Tan Z J, Bernal S A, Provis J L. Reproducible mini-slump test procedure for measuring the yield stress of cementitious pastes. Mater Struct, 2017, 50(6): 235 doi: 10.1617/s11527-017-1103-x
    [11] Wallevik J E. Relationship between the Bingham parameters and slump. Cem Concr Res, 2006, 36(7): 1214 doi: 10.1016/j.cemconres.2006.03.001
    [12] Li L, Zhang J, Hassani F, et al. Slump tests for yield stress of paste tailings. Met Mine, 2017(1): 30 doi: 10.3969/j.issn.1001-1250.2017.01.007

    李亮, 张柬, Hassani F, 等. 膏体尾矿屈服应力的塌落度试验研究. 金属矿山, 2017(1):30 doi: 10.3969/j.issn.1001-1250.2017.01.007
    [13] Pei D F, Song Z P, Qi Z J, et al. Prediction on rheological parameters of pasty backfilling slurry based on mini-slump mould and consistency funnel. Met Mine, 2020(4): 15

    裴佃飞, 宋泽普, 齐兆军, 等. 基于微型塌落筒和稠度漏斗的膏体充填料浆流变参数预测研究. 金属矿山, 2020(4):15
    [14] Zhou H, Zhang X W, Jiang H Q, et al. Relation between slump and yield stress of tailing slurry with different particle sizes. J Guangxi Univ (Nat Sci Ed), 2022, 47(1): 103 doi: 10.13624/j.cnki.issn.1001-7445.2022.0103

    周晃, 张希巍, 姜海强, 等. 不同粒径尾砂料浆塌落度和屈服应力关系. 广西大学学报(自然科学版), 2022, 47(1):103 doi: 10.13624/j.cnki.issn.1001-7445.2022.0103
    [15] Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB/T 50080—2016 Standard for Test Method of Performance on Ordinary Fresh Concrete. Beijing: China Architecture Publishing, 2016

    中华人民共和国住房与城乡建设部. GB/T 50080—2016普通混凝土拌合物性能试验方法标准. 北京: 中国建筑工业出版社, 2016
    [16] Chen X Z, Yang X C, Guo L J, et al. Rheological properties of tailings paste based on a spread test. Chin J Eng, 2020, 42(10): 1299

    陈鑫政, 杨小聪, 郭利杰, 等. 基于扩散度的尾砂膏体流变特性. 工程科学学报, 2020, 42(10):1299
    [17] Wu A X, Jiao H Z, Wang H J, et al. Yield stress measurements and optimization of Paste tailings. J Central South Univ (Sci Technol), 2013, 44(8): 3370

    吴爱祥, 焦华喆, 王洪江, 等. 膏体尾矿屈服应力检测及其优化. 中南大学学报(自然科学版), 2013, 44(8):3370
    [18] Hou Y Q, Yin S H, Dai C Q, et al. Rheological properties and pipeline resistance calculation model in tailings paste. Chin J Nonferrous Met, 2021, 31(2): 510 doi: 10.11817/j.ysxb.1004.0609.2021-35800

    侯永强, 尹升华, 戴超群, 等. 尾矿膏体流变特性和管输阻力计算模型. 中国有色金属学报, 2021, 31(2):510 doi: 10.11817/j.ysxb.1004.0609.2021-35800
    [19] Kou Y P, Jiang H Q, Ren L, et al. Rheological properties of cemented paste backfill with alkali-activated slag. Minerals, 2020, 10(3): 288 doi: 10.3390/min10030288
    [20] Wang M M. Construction and application of two-factor analysis of variance model. Stat Decis, 2015(18): 72 doi: 10.13546/j.cnki.tjyjc.2015.18.020

    王苗苗. 双因素方差分析模型的构建及应用. 统计与决策, 2015(18):72 doi: 10.13546/j.cnki.tjyjc.2015.18.020
    [21] Dai J H, Han C. A comparative study on two-way ANOVA. Stat Decis, 2018, 34(4): 30 doi: 10.13546/j.cnki.tjyjc.2018.04.006

    戴金辉, 韩存. 双因素方差分析方法的比较. 统计与决策, 2018, 34(4):30 doi: 10.13546/j.cnki.tjyjc.2018.04.006
    [22] Li W C, Guo L J, Liu G S, et al. Analytical and experimental investigation of the relationship between spread and yield stress in the mini-cone test for cemented tailings backfill. Constr Build Mater, 2020, 260: 119770 doi: 10.1016/j.conbuildmat.2020.119770
    [23] Clayton S, Grice T G, Boger D V. Analysis of the slump test for on-site yield stress measurement of mineral suspensions. Int J Miner Process, 2003, 70(1-4): 3 doi: 10.1016/S0301-7516(02)00148-5
    [24] Shen H M, Wu A X, Jiang L C, et al. Small cylindrical slump test for unclassified tailings paste. J Central South Univ (Sci Technol), 2016, 47(1): 204

    沈慧明, 吴爱祥, 姜立春, 等. 全尾砂膏体小型圆柱塌落度检测. 中南大学学报(自然科学版), 2016, 47(1):204
    [25] Wu F, Yang F G, Xiao B L, et al. Characterization of rheological property and its application of high concentration and mixed aggregate filling slurry based on spread. J Central South Univ (Sci Technol), 2022, 53(8): 3104

    吴凡, 杨发光, 肖柏林, 等. 基于扩展度表征高浓度混合骨料充填料浆流变特性及应用. 中南大学学报(自然科学版), 2022, 53(8):3104
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  68
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-04
  • 网络出版日期:  2023-02-07
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回