-
摘要: 深部岩体相比浅部岩体具有强流变性、强湿热环境和强动力灾害等差异,相关岩体力学理论和开采技术不再适用于深部金属矿开采。因此本文对深部岩体力学、深部建井提升、绿色开采、智能开采这4个金属矿深部开采的关键理论技术的研究现状进行综述,并针对性提出未来的研究重点。最后,基于现阶段深部金属矿开采的关键技术和理论的研究现状以及存在的问题,提出了发展和完善极深部岩体力学理论、进行原位流态化开采技术研究和应用以及建设超大型深部智慧化无人矿山这3个方面的展望。随着金属矿开采深度不断下降,亟需研究金属矿深部开采相关理论技术,确保深部金属矿产资源安全、高效、经济、环保地进行开采。Abstract: Mineral resources are essential to human life and social development and play an important role in national security and economic development. China has huge reserves of metal mineral resources, but the per capita possession is low. Especially, it is difficult for iron, copper, aluminum, and other metal mineral resources to be self-sufficient and heavily dependent on foreign countries. Because of the massive exploitation of metal mineral resources, shallow resources are becoming exhausted, and deep mining will become the main force for the supply of metal mineral resources in the future. “Going deep into the earth” corresponds to the current state of national resource strategy development. It is found that there is still a certain gap between China’s deep metal mining technology and mining depth compared with internationally developed mining countries. The mining depth of foreign mining countries is mostly over 3000 m, with three South African mines having a mining depth of over 4000 m, whereas the mining depth of Chinese mines is mostly below 2000 m, and most of the metal mines have not yet broken through the kilometer depth. Furthermore, the level of mining technology in established mining countries abroad is high, and the degree of mechanization and intelligence is high. Deep mining technology in China is insufficient to meet the need for deep mining. China still has a large gap compared with internationally developed countries; therefore, the related rock mass mechanics theory and mining technology are no longer suitable for deep metal mining. In this paper, we summarize the research status of four major theories and technologies for deep mining of metal mines, namely, deep rock mechanics, deep well building and lifting, green mining, and intelligent mining, and proposes future research emphases. Finally, based on the research status and existing problems of the key technologies and theories of deep metal mining at present, the paper puts forward three strategic ideas: deep-part construction of a super-large intelligent autonomous mine, in-situ fluidized mining, and rock mechanics. With the continuous increase of mining depth, it is urgent to study the related theory and technology of deep mining of metal mines so as to ensure the safe, efficient, economical, and environmentally friendly mining of deep metal mineral resources and ensure the resource security of our country.
-
Key words:
- deep metal mines /
- rock mechanics /
- shaft construction and hoisting /
- green mining /
- intelligent mining
-
Name Mining depth/m Country Western deep level gold mine 4800 South Africa Mponeng gold mine 4350 South Africa Savuka gold mine 4000 South Africa Tau Tona Anglo gold mine 3900 South Africa Caritonville gold mine 3800 South Africa East Rand Proprietary mines 3585 South Africa South deep gold mine 3500 South Africa Kloof gold mine 3500 South Africa Driefontein gold mine 3400 South Africa Kusasalethu gold mine 3276 South Africa Champion Reef gold mine 3260 India Kolar gold mine (closed) 3200 India President Steyn gold mine 3200 South Africa Boksburg gold mine 3150 South Africa LaRonde gold–silver–copper–zine mine 3120 Canada Andina copper mine 3070 Chile Moab Khotsong gold mine 3054 South Africa Lucky Friday silver–lead–zinc mine 3000 USA Kidd Creek copper–zine mine 2927 Canada Great Noligwa gold mine 2600 South Africa Creighton nickel mine 2500 Canada Merensky Reef platinum-palladium mine 2200 South Africa Sudbury copper–nickel mine 2000 Canada Mount Isa copper mine 1900 Australia Pribram Uranium mine 1836 Czech Republic SDAG Wismut Uranium mine (closed) 1800 Germany Cheremukhovskaya–Glubokaya copper mine 1550 Former Soviet Union Boulby Potash mine 1300 UK Noranda mine 1280 Canada 表 2 国外主要矿业大国深部开采研究历程
Table 2. Research process of deep mining in major foreign mining countries
Year Research process Country 1908 Sets up rock burst commission South Africa 1942 Classical seminar on rock burst in Ontario Canada 1960s Research on monitoring rock burst using microseismic technique USA 1970s Establish a microseismic monitoring system South Africa 1977 Organized a special committee on rockburst The International Society for Rock Mechanics 1983 Carried out special research to solve the problems of 1600 m deep mining Soviet Union 1985 Ontario industry project and rockburst research program Canada 1990s Research on the differences in signals such as rock bursts, natural
earthquakes, and nuclear explosionsUSA 1998 Launched the "Deep Mine" research project South Africa 1999 Established geomechanics center Australia 2011 Research on earthquakes in deep underground mines (1000–3000 m) South Africa and Japan 2015 Established ultra-deep mining network Canada 2016 Asked three forward-looking questions European Union 表 3 国内典型深部金属矿山
Table 3. Typical deep metal mines in China
Name Mining depth/m Metal type Henan Qinling gold mine 1990 Gold Henan Fuxin gold mine 1600 Gold Jilin Jiapigou gold mine 1600 Gold Yunnan Huize lead–zinc mine 1500 Lead–zinc Yunnan Liuju copper mine 1500 Copper Liaoning Sishanling iron mine 1500 Iron Liaoning Hongtoushan copper mine 1300 Copper Henan Wenyu gold mine 1300 Gold Shannxi Tongguanzhongjin gold mine 1200 Gold Shandong Linglong gold mine 1200 Gold Anhui Dongguashan copper mine 1120 Copper Hunan Xiangxi gold mine 1100 Gold Xinjiang Ashele copper mine 1100 Copper Liaoning Erdaogou gold mine 1100 Gold Hebei Jinchangyu gold mine 1100 Gold Shandong Sanshandao gold mine 1050 Gold Shandong Jining iron mine 1045 Iron Gansu Jinchuan nickel mine 1000 Nickel Shandong Jinzhou mining 1000 Gold Liaoning Gongchangling iron mine 1000 Iron Hebei Shouwangfen copper mine 1000 Copper Shandong Rushan gold mine 1000 Gold -
参考文献
[1] Xing L T, Xu Z H, Wang Q. Exploitation, Utilization and Planning of Mineral Resources. Beijing: Metallurgical Industry Press, 2008邢立亭, 徐征和, 王青. 矿产资源开发利用与规划. 北京: 冶金工业出版社, 2008 [2] Wu A X, Wang Y, Zhang M Z, et al. New development and prospect of key technology in underground mining of metal mines. Met Mine, 2021(1): 1吴爱祥, 王勇, 张敏哲, 等. 金属矿山地下开采关键技术新进展与展望. 金属矿山, 2021(1):1 [3] Li F Q, Li J W. Study on economic importance assessment of metal mineral resources. China Min Mag, 2018, 27(12): 6李芳琴, 李建武. 金属矿产资源经济重要性评估研究. 中国矿业, 2018, 27(12):6 [4] Feng J C. Analysis on the construction of China’s metal mineral resources reserve system. Theory Mon, 2010(12): 164冯进城. 浅析我国金属矿产资源储备体系的构建. 理论月刊, 2010(12):164 [5] Wang Y M. Opportunities and challenges to metal mine mining industry and the technical countermeasures. Mod Min, 2011, 27(1): 1王运敏. 金属矿采矿工业面临的机遇和挑战及技术对策. 现代矿业, 2011, 27(1):1 [6] Li X B, Zhou J, Wang S F, et al. Review and practice of deep mining for solid mineral resources. Chin J Nonferrous Met, 2017, 27(6): 1236李夕兵, 周健, 王少锋, 等. 深部固体资源开采评述与探索. 中国有色金属学报, 2017, 27(6):1236 [7] Els F. Idaho silver mine shaft sunk to final depth of 9587 feet [EB/OL]. (2016-05-24)[2022-11-12]. http://www.mining. com/idaho-silver-mine-shaft-sunk-final-depth-9587-feet/ [8] The outline of strategic action for ore prospecting breakthrough (2011—2020) was officially released. Equip Geotech Eng, 2012, 13(4): 3找矿突破战略行动纲要(2011—2020年)正式发布. 地质装备, 2012, 13(4): 3 [9] Xi J P. Struggling for building a world powerful country in science and technology [EB/OL]. (2016-05-31) [2022-11-12]. http://www.xinhuanet.com/politics/2016-05/31/c_1118965169.htm习近平. 为建设世界科技强国而奋斗 [EB/OL]. (2016-05-31)[2022-11-12]. http://www.xinhuanet.com/politics/2016-05/31/c_1118965169.htm [10] The ministry of natural resources will organize and implement the strategic mineral prospecting action (2021—2035). Miner Explor, 2021, 12(4): 988自然资源部将组织实施《战略性矿产找矿行动(2021—2035年)》. 矿产勘查, 2021, 12(4): 988 [11] Hedley D G F. Rockburst Handbook for Ontario Hardrock Mines. Ontario: Energy, Mines and Resources Canada, 1992 [12] Zhao S C. Resource exploitation and underground engineering in deep stress—175th summary of Xiangshan conference. Adv Earth Sci, 2002, 17(2): 295赵生才. 深部高应力下的资源开采与地下工程——香山会议第175次综述. 地球科学进展, 2002, 17(2):295 [13] Bieniawski Z T. Strata Control in Mineral Engineering. United States: U. S. Department of Energy, 1986 [14] Dong L J, Tong X J, Li X B, et al. Some developments and new insights of environmental problems and deep mining strategy for cleaner production in mines. J Clean Prod, 2019, 210: 1562 doi: 10.1016/j.jclepro.2018.10.291 [15] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417蔡美峰, 薛鼎龙, 任奋华. 金属矿深部开采现状与发展战略. 工程科学学报, 2019, 41(4):417 [16] Li X B. Correct understanding and accurate positioning of zonal fracturing is of great significance to deep mining of metal mines // Proceedings of Academic Salon of New Views and New Theories 21. Beijing, 2008: 32李夕兵. 分区破裂化正确认识与准确定位对金属矿山深部开采的意义重大// 新观点新学说学术沙龙文集 21. 北京, 2008: 32 [17] Bolstad D D. Rockburst control research by the US bureau of mines // Rockbursts and Seismicity in Mines. Rotterdam, 1990 [18] Li X B, Gu D S. Disaster control and crushing mutagenesis of high stress in hard mining of deep wells // The 175th Scientific Conference of Xiangshan. Beijing, 2002: 101李夕兵, 古德生. 深井坚硬矿岩开采中高应力的灾害控制与破碎诱变 // 香山第175次科学会议. 北京, 2002: 101 [19] Jiang F F, Zhou H, Liu C, et al. Progress, prediction and prevention of rockbursts in underground metal mines. Chin J Rock Mech Eng, 2019, 38(5): 956江飞飞, 周辉, 刘畅, 等. 地下金属矿山岩爆研究进展及预测与防治. 岩石力学与工程学报, 2019, 38(5):956 [20] He M C, Xie H P, Peng S P, et al. Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng, 2005, 24(16): 2803何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究. 岩石力学与工程学报, 2005, 24(16):2803 [21] Australian Centre for Geomechanics. ACG research [EB/OL]. (2016-09-20)[2022-11-12]. http://acg.uwa.edu.au/acg -research/ [22] Durrheim R, Ogasawara H, Nakatani M, et al. Observational studies to mitigate seismic risks in mines — A new Japanese–South African collaborative research project // Proceedings of the Fifth International Seminar on Deep and High Stress Mining", "Proceedings of the International Conference on Deep and High Stress Mining. Perth, 2010: 11 [23] I2Mine. Project overview [EB/OL]. [2022-11-12]. http://www.i2mine.eu [24] CHPM2030. Combined heat, power and metal extraction [EB/OL]. [2022-11-12]. http://www.chpm2030.eu [25] Johnson D B. Biomining–biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol, 2014, 30: 24 doi: 10.1016/j.copbio.2014.04.008 [26] Li Y S. Research and review of mine impact at home and abroad. Ref Mater Coal Sci Res, 1982(4): 1李玉生. 国内外矿山冲击的研究及评述. 煤炭科研参考资料, 1982(4):1 [27] Guo J F, Diao X H, Zhang C X, et al. On the research of the mining technology for Dongguashan deep-lying copper deposit. Met Mine, 2002(1): 10郭金峰, 刁心宏, 张传信, 等. 冬瓜山深埋铜矿床开采技术的研究. 金属矿山, 2002(1):10 [28] Bian Z H. Application of infrastructure prospecting in mine construction with ultra-deep well: Taking sishanling iron mine as an example. Mod Min, 2020, 36(8): 68边振辉. 基建勘探在超深井矿山建设中的应用: 以思山岭铁矿为例. 现代矿业, 2020, 36(8):68 [29] Gu D S. The development tendency of mining science and technology of underground metal mine. Gold, 2004, 25(1): 18古德生. 地下金属矿采矿科学技术的发展趋势. 黄金, 2004, 25(1):18 [30] Jiang Y D, Pan Y S, Jiang F X, et al. State of the art review on mechanism and prevention of coal bumps in China. J China Coal Soc, 2014, 39(2): 205姜耀东, 潘一山, 姜福兴, 等. 我国煤炭开采中的冲击地压机理和防治. 煤炭学报, 2014, 39(2):205 [31] Notice of the state council municipality on printing and distributing the 13th five-year national science and technology innovation plan. Gazette State Counc People’s Repub China, 2016(24): 6国务院关于印发“十三五”国家科技创新规划的通知. 中华人民共和国国务院公报, 2016(24): 6 [32] Yang T. Discussion on underground mining technology and development trend of underground mining. Mod Chem Res, 2020(10): 9杨涛. 谈井下采矿技术及井下采矿的发展趋势. 当代化工研究, 2020(10):9 [33] Li X F, Tan D X, Liu X L. Technical transformation of mining technology of deep metal ore body in mine. Min Technol, 2014, 14(4): 10李学锋, 谭定新, 刘湘莲. 金属矿山深部矿体开采工艺的技术改造. 采矿技术, 2014, 14(4):10 [34] Xie H P, Feng X T. Basic Research on Safety of Major Projects in Disaster Environment. Beijing: Science Press, 2009谢和平, 冯夏庭. 灾害环境下重大工程安全性的基础研究. 北京: 科学出版社, 2009 [35] Bready B H G, Brown E T. Rock Mechanics for Underground Mining. New York: Kluwer Academic Publishers, 2005 [36] Xie H P, Gao F, Ju Y. Research and development of rock mechanics in deep ground engineering. Chin J Rock Mech Eng, 2015, 34(11): 2161谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索. 岩石力学与工程学报, 2015, 34(11):2161 [37] Kang H P, Feng Y J. Monitoring of stress change in coal seam caused by directional hydraulic fracturing in working face with strong roof and its evolution. J China Coal Soc, 2012, 37(12): 1953康红普, 冯彦军. 定向水力压裂工作面煤体应力监测及其演化规律. 煤炭学报, 2012, 37(12):1953 [38] Kang H P, Wang G F, Jiang P F, et al. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1000m. J China Coal Soc, 2018, 43(7): 1789康红普, 王国法, 姜鹏飞, 等. 煤矿千米深井围岩控制及智能开采技术构想. 煤炭学报, 2018, 43(7):1789 [39] Liu Z Q, Song Z Y, Cheng S Y, et al. Equipment and key technologies for full-section scientifically drilling of kilometer-level vertical shafts. J China Coal Soc, 2020, 45(11): 3645刘志强, 宋朝阳, 程守业, 等. 千米级竖井全断面科学钻进装备与关键技术分析. 煤炭学报, 2020, 45(11):3645 [40] Liang P F, Leng K, Ma Q. Research on the key hoisting technology in deep shafts of metal mines. J Liaoning Univ Technol, 2018, 38(1): 29梁鹏飞, 冷奎, 马倩. 金属矿山深井提升关键技术探讨. 辽宁工业大学学报(自然科学版), 2018, 38(1):29 [41] Han R J, Wang H L, Zhang W. Discussion of multi-rope friction hoisting rope in deep shaft. Nonferrous Metall Equip, 2019(2): 102韩瑞军, 王会来, 张伟. 深井多绳摩擦提升钢丝绳研究. 有色设备, 2019(2):102 [42] Zhao G Y, Wu P, Pei D F, et al. Study on the mining mode in deep metal mines and its technological system based on green mining. Gold, 2020, 41(9): 58赵国彦, 吴攀, 裴佃飞, 等. 基于绿色开采的深部金属矿开采模式与技术体系研究. 黄金, 2020, 41(9):58 [43] Liu X H. Tailings paste disposal will become the main trend of green mining of metal mines. China Mining News, 2018-6-20(3)刘晓慧. 尾矿膏体处置将成金属矿绿色开采主趋势. 中国矿业报, 2018-6-20(3) [44] Ruan Z E, Wu A X, Jiao H Z, et al. Advances and trends on thickening of full-tailings slurry in China. Chin J Nonferrous Met, 2022, 32(1): 286阮竹恩, 吴爱祥, 焦华喆, 等. 我国全尾砂料浆浓密研究进展与发展趋势. 中国有色金属学报, 2022, 32(1):286 [45] Wu A X, Wang Y, Wang H J. Status and prospects of the paste backfill technology. Met Mine, 2016(7): 1吴爱祥, 王勇, 王洪江. 膏体充填技术现状及趋势. 金属矿山, 2016(7):1 [46] Wu A X, Wang H J. Theory and Technology of Metal Paste Filling. Beijing: Science Press, 2015吴爱祥, 王洪江. 金属矿膏体充填理论与技术. 北京: 科学出版社, 2015 [47] Kagermann H, Wahlster W, Helbig J. Securing the Future of German Manufacturing Industry: Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0. Final Report of the Industrie 4.0 Working Group, 2015 [48] Wang L H. From intelligence science to intelligent manufacturing. Engineering, 2019, 5(4): 615 doi: 10.1016/j.eng.2019.04.011 [49] Zhou J. Research on the construction of enterprise integration management system. Mod Ind Econ, 2013(11): 16周剑. 企业两化融合管理体系构建研究. 现代产业经济, 2013(11):16 [50] Gustafson A, Lipsett M, Schunnesson H, et al. Development of a Markov model for production performance optimisation. Application for semi-automatic and manual LHD machines in underground mines. Int J Min Reclam Environ, 2014, 28(5): 342 [51] Li J G, Zhan K. Intelligent mining technology for an underground metal mine based on unmanned equipment. Engineering, 2018, 4(3): 381 doi: 10.1016/j.eng.2018.05.013 [52] Xie H P. Research framework and anticipated results of deep rock mechanics and mining theory. Adv Eng Sci, 2017, 49(2): 1谢和平. “深部岩体力学与开采理论”研究构想与预期成果展望. 工程科学与技术, 2017, 49(2):1 [53] Xie H P, Wang J H, Ju Y. Coal Industry Reform: Strategies and Directions. Beijing: Science Press, 2018谢和平, 王金华, 鞠杨. 煤炭革命的战略与方向. 北京: 科学出版社, 2018 [54] Ranjith P G, Zhao J, Ju M H, et al. Opportunities and challenges in deep mining: A brief review. Engineering, 2017, 3(4): 546 doi: 10.1016/J.ENG.2017.04.024 [55] Xie H P, Gao F, Ju Y, et al. Theoretical and technological conception of the fluidization mining for deep coal resources. J China Coal Soc, 2017, 42(3): 547谢和平, 高峰, 鞠杨, 等. 深地煤炭资源流态化开采理论与技术构想. 煤炭学报, 2017, 42(3):547 [56] Xie H P, Gao F, Ju Y, et al. Novel idea and disruptive technologies for the exploration and research of deep earth. Adv Eng Sci, 2017, 49(1): 1谢和平, 高峰, 鞠杨, 等. 深地科学领域的若干颠覆性技术构想和研究方向. 工程科学与技术, 2017, 49(1):1 [57] Wu A X, Wang H J, Yin S H, et al. Conception of in situ fluidization mining for deep metal mines. J Min Sci Technol, 2021, 6(3): 255吴爱祥, 王洪江, 尹升华, 等. 深层金属矿原位流态化开采构想. 矿业科学学报, 2021, 6(3):255 [58] Liang W G, Zhao Y S, Xu S G, et al. Theoretical study of in situ solution mining. J Taiyuan Univ Technol, 2012, 43(3): 382梁卫国, 赵阳升, 徐素国, 等. 原位溶浸采矿理论研究. 太原理工大学学报, 2012, 43(3):382 [59] Bhargava S K, Ram R, Pownceby M, et al. A review of acid leaching of uraninite. Hydrometallurgy, 2015, 151: 10 doi: 10.1016/j.hydromet.2014.10.015 [60] Tu S H, Hao D Y, Miao K J, et al. Research of synergetic mining for mining, dressing and backfilling integrated deep mines with complicated systems. J China Univ Min Technol, 2021, 50(3): 431屠世浩, 郝定溢, 苗凯军, 等. 深部采选充一体化矿井复杂系统协同开采. 中国矿业大学学报, 2021, 50(3):431 [61] Sun C Y, Song Z G. Development and application outline of integrated underground mining-processing system. Min Metall, 2017, 26(1): 1孙传尧, 宋振国. 地下采选一体化系统的研究及应用概况. 矿冶, 2017, 26(1):1 [62] Luo X Y, Li J N, Lang D. Basic connotation, core problems and key technologies of wisdom mine. Ind Mine Autom, 2019, 45(9): 61罗香玉, 李嘉楠, 郎丁. 智慧矿山基本内涵、核心问题与关键技术. 工矿自动化, 2019, 45(9):61 [63] Lyu P F, He M, Chen X J, et al. Development and prospect of wisdom mine. Ind Mine Autom, 2018, 44(9): 84吕鹏飞, 何敏, 陈晓晶, 等. 智慧矿山发展与展望. 工矿自动化, 2018, 44(9):84 [64] Zhao M L. Research on the framework and development prospect of intelligent mine. Sci Technol Innov, 2019(23): 180 doi: 10.3969/j.issn.1673-1328.2019.23.109赵明磊. 智慧矿山框架与发展前景研究. 科学技术创新, 2019(23):180 doi: 10.3969/j.issn.1673-1328.2019.23.109 [65] Zhang Y M. Interpretation of smart earth and smart city. Inf China, 2010(10): 23张永民. 解读智慧地球与智慧城市. 中国信息界, 2010(10):23 -