Progress and prospects of flue gas deNOx technology for the iron and steel industry
-
摘要: 氮氧化物(NOx)已成为我国首要大气污染物,钢铁工业是工业源NOx排放的主要来源。烧结、球团、炼焦等工序是钢铁工业NOx超低排放改造的重点,但其烟气特性与火电厂烟气存在差异,烟气脱硝技术不能完全照搬现有燃煤锅炉脱硝工艺。目前,选择性催化还原(SCR)、活性炭(焦)(AC)吸附催化、臭氧(O3)氧化协同吸收等技术已在烧结、球团、炼焦等工序成功应用,并均取得了良好效果。本文针对钢铁工业超低排放的迫切需求,梳理了钢铁工业烧结、球团、炼焦等主要工序的现有烟气脱硝技术及其应用,重点总结并对比分析了SCR技术、AC吸附催化和O3氧化协同吸收技术的应用进展及优劣势。其中,SCR技术正逐步成为钢铁工业脱硝市场的主流技术,占比超过70%,因此脱硝催化剂及其再生具有长期巨大的市场需求。AC吸附催化和O3氧化协同吸收等新型技术因其适用温度低,无需烟气升温等,在钢铁工业越来越受到青睐,将逐步得到更多钢铁企业的支持。Abstract: Nitrogen oxides (NOx) are the primary air pollutant in China. The iron and steel industries have become the primary industrial sources of NOx emissions in China. The NOx emissions from iron and steel industries account for 27.3% of all industrial NOx emissions from sources nationwide, surpassing thermal power generation and cement manufacturing. Over the past ten years, China’s iron and steel industry has achieved tremendous results in flue gas desulfurization, but a huge gap in denitrogenate (deNOx) still remains. In 2019, the Ministry of Ecology and Environment and other departments jointly issued “Opinions on Promoting the Implementation of Ultra-low Emission in the Iron and Steel Industry”, which promoted the retrofitting of ultra-low emission in the iron and steel industry. Sintering, pelleting, coking, and other processes are the focus of retrofitting for NOx emissions. Because their low-temperature flue gas contains several contaminants that differ from the flue gas of thermal power plants, they cannot completely copy the existing deNOx technology for the coal-fired boiler flue gas of thermal power plants. At present, selective catalytic reduction (SCR), activated carbon (AC) adsorption catalysis, ozone (O3) oxidation and absorption, and other technologies are used in sintering, pelleting, and coking processes. These technologies have achieved good results. Herein, we investigated the existing flue gas deNOx technologies for sintering, pelleting, and coking processes in iron and steel industries and analyzed the advantages and disadvantages of SCR technology, AC adsorption catalysis, and O3 oxidation and absorption technologies. The SCR technology has high efficiency and reliable performance, but the operation process requires heating of the flue gas, which uses large amounts of blast furnace gas or coking oven gas, and the service life of the catalyst is typically approximately three years. The waste SCR catalysts are recognized as HW50 hazardous waste. AC adsorption catalytic technology can simultaneously desulfurize and deNOx; its operating temperature is low without flue gas reheating. The by-product of H2SO4 can be utilized, and the waste AC produced can be directly used for sintering or coking, while its deNOx efficiency is low. O3 oxidation and absorption technologies have a low initial investment cost and require little floor space. However, their operating cost is relatively high, and the coabsorption of NOx and SO2 makes the desulfurization ash mixed with nitrate, which increases the difficulty of comprehensive utilization. Finally, we analyzed the application possibilities of SCR and other technologies, providing a reference for the development and selection of deNOx technologies for flue gas from the iron and steel industry.
-
表 1 我国钢铁工业NOx超低排放标准
Table 1. Ultra-low emissions of NOx for the iron and steel industry in China
Implemented region Limit of NOx emission for production processes (specific equipment)/(mg·m−3) Criterion number Sintering/pelletizing
(sintering head/pellet
firing machine)Blast furnace
ironmaking
(hot blast stove)Steel-smelting (lime
and dolomite kiln)Steel rolling (heat
treatment furnace)Coking (coke oven chimney) Nation 500,
300 (new project)300 350,
300 (new project)240,
200 (new project)GB 28662—2012,
GB 28663—2012,
GB 28664—2012,
GB 16717—2012Nation 50 200 200 150 (2019) No.35 Shanxi 50 200 200 200 DB14/2249—2020 Tianjin 50 200 150 200 150 DB12/1120—2022 Hebei 50 150 150 150 130 DB13/2169—2018,
DB13/2863—2018Shandong 50 150 150 100 (key area),
150 (general area)DB37/990—2019,
DB37/2376—2019Henan 50 150 150 100 DB41/1954—2020,
DB41/1955—2020表 2 山西五麟煤焦脱硝催化剂设计参数[22]
Table 2. Design parameters of catalysts for Shanxi Wulin Coal Coke Co., Ltd. [22]
Catalyst’s type Hole density Thermal expansion coefficient/℃−1 Compressive strength/MPa Size of catalyst/
(mm×mm×mm)Pitch/mm Density
/(kg·m−3)Cordierite honeycomb ceramic coating 100 holes per inch ≤1.6×10−6 Axial ≥ 15;
radial ≥ 2150×150 ×125 2.5 600–700 Components Operating temperature/℃ Amount of catalysts/m3 Arrangement Catalyst layers Gaseous hourly space velocity/h−1 Designed life/h V2O5-WO3/TiO2/ Cordierite 250–350 30.38 60×60 units per layer 3+1 6000-7000 24000 Project Annual consumption Convert coefficient Convert to standard coal/GJ Activated carbon 701 t 29.3 MJ·kg−1 20529 Electric energy 1594×104 kW·h 3.6 MJ·kW·h−1 57399 NH3 1251 t 11.7 MJ·kg−1 14662 Coke oven gas 455×104 m3 16.7 MJ·m−3 76176 Compressed air 1226×104 m3 1.0 MJ·m−3 12249 N2 701×104 m3 11.7 MJ·m−3 82157 steam 26280 t 3.8 MJ·kg−1 99023 water 10512 t 4.2 MJ·kg−1 44044 Total 406250 表 4 钢铁工业烟气脱硝技术优劣势对比
Table 4. Advantages and disadvantages of deNOx technology for the iron and steel industry
DeNOx Technologies Typical routes DeNOx temperature/℃ NOx removal/% Advantages Disadvantages SCR technology Wet/semidry desulfurization + SCR 200-300 ≥80 High NOx removal efficiency;
high stability.High facilities and catalyst replacement cost;
high cost for flue gas heating;
produce hazardous waste.AC adsorption and catalysis AC integrated technology 120-150 ≥50 Removal of SO2 and NOx simultaneously;
utilization of by-products;
easy to use of waste AC.Low NOx removal efficiency;
High cost of running and AC replacement;
potential risk of AC ignition.O3 oxidation with absorption O3 oxidation + wet/semidry desulfurization 90-150 ≥70 Low facilities cost;
low floor space;
high stability.Relative high running cost;
potential risk of O3 escape;
bad for utilization of desulfurization slag. -
参考文献
[1] Yi H H, Zhong T T, Liu J, et al. Emissions of air pollutants from sintering flue gas in the Beijing-Tianjin-Hebei area and proposed reduction measures. J Clean Prod, 2021, 304: 126958 doi: 10.1016/j.jclepro.2021.126958 [2] Zhang J L, Yu J Y, Liu Z J, et al. Current situation and trend of air pollutant emission in China’s steel industry. Iron Steel, 2021, 56(12): 1 doi: 10.13228/j.boyuan.issn0449-749x.20210068张建良, 尉继勇, 刘征建, 等. 中国钢铁工业空气污染物排放现状及趋势. 钢铁, 2021, 56(12):1 doi: 10.13228/j.boyuan.issn0449-749x.20210068 [3] Cui L, Ba K M, Li F Q, et al. Life cycle assessment of ultra-low treatment for steel industry sintering flue gas emissions. Sci Total Environ, 2020, 725: 138292 doi: 10.1016/j.scitotenv.2020.138292 [4] Tian T, Cheng Q, Zhao X, et al. Review and prospect of the development of desulfurization and denitration industry in 2019. China Environ Prot Ind, 2020(2): 23 doi: 10.3969/j.issn.1006-5377.2020.02.007田恬, 程茜, 赵雪, 等. 2019年脱硫脱硝行业发展评述及展望. 中国环保产业, 2020(2):23 doi: 10.3969/j.issn.1006-5377.2020.02.007 [5] Hu B, Hu P W, Lu B, et al. NOx emission reduction by advanced reburning in grate-rotary kiln for the iron ore pelletizing production. Processes, 2020, 8(11): 1470 doi: 10.3390/pr8111470 [6] Wang Z C, Zhou Z A, Gan M, et al. Process control technology of low NOx sintering based on coke pretreatment. J Cent South Univ, 2020, 27(2): 469 doi: 10.1007/s11771-020-4309-y [7] Que Z G, Ai X B, Wu S L. Reduction of NOx emission based on optimized proportions of mill scale and coke breeze in sintering process. Int J Miner Metall Mater, 2021, 28(9): 1453 doi: 10.1007/s12613-020-2103-3 [8] Yu Y, Zhu T Y, Liu X L. Progress of ultra-low emission technology for key processes of iron and steel industry in China. Iron Steel, 2019, 54(9): 1 doi: 10.13228/j.boyuan.issn0449-749x.20190061于勇, 朱廷钰, 刘霄龙. 中国钢铁行业重点工序烟气超低排放技术进展. 钢铁, 2019, 54(9):1 doi: 10.13228/j.boyuan.issn0449-749x.20190061 [9] Long H M, Ding L, Qian L X, et al. Current situation and development trend of NOx and dioxins emission reduction in sintering flue gas. Chem Ind Eng Prog, 2022, 41(7): 3865龙红明, 丁龙, 钱立新, 等. 烧结烟气中NOx和二噁英的减排现状及发展趋势. 化工进展, 2022, 41(7):3865 [10] Guo Y H. Current station and tendency of purification and upgrading of blast furnace gas. J Iron Steel Res, 2020, 32(7): 525 doi: 10.13228/j.boyuan.issn1001-0963.20190274郭玉华. 高炉煤气净化提质利用技术现状及未来发展趋势. 钢铁研究学报, 2020, 32(7):525 doi: 10.13228/j.boyuan.issn1001-0963.20190274 [11] Wei Q L, Ge L J, Liu S J, et al. High air temperature and low nitrogen combustion technology of top burning catenary hot blast stove. Hebei Metall, 2021(2): 64 doi: 10.13630/j.cnki.13-1172.2021.0214魏前龙, 葛利军, 刘世聚, 等. 顶燃式悬链线热风炉高风温低氮燃烧技术. 河北冶金, 2021(2):64 doi: 10.13630/j.cnki.13-1172.2021.0214 [12] Xu J M, Zhu J M, Li X L, et al. Reformation and practice of low nitrogen combustion method to reduce NOx emission in steel rolling reheating furnace. Energy Metall Ind, 2021, 40(3): 42 doi: 10.3969/j.issn.1001-1617.2021.03.010许京铭, 朱继民, 李新林, 等. 轧钢加热炉采用低氮燃烧法降低NOx排放的改造与实践. 冶金能源, 2021, 40(3):42 doi: 10.3969/j.issn.1001-1617.2021.03.010 [13] Dong S Y, Zhu B C. New technology of low NOx combustion in 7m battery and its application. Fuel Chem Process, 2020, 51(1): 50 doi: 10.16044/j.cnki.rlyhg.2020.01.019董少英, 朱百成. 7m焦炉低氮燃烧新技术及应用. 燃料与化工, 2020, 51(1):50 doi: 10.16044/j.cnki.rlyhg.2020.01.019 [14] Zhang B L, Zhang S G, Liu B. Effect of oxygen vacancies on ceria catalyst for selective catalytic reduction of NO with NH3. Appl Surf Sci, 2020, 529: 147068 doi: 10.1016/j.apsusc.2020.147068 [15] Zhang B L, Deng L F, Liu B, et al. Synergistic effect of cobalt and niobium in Co3-Nb-Ox on performance of selective catalytic reduction of NO with NH3. Rare Met, 2022, 41(1): 166 doi: 10.1007/s12598-021-01790-5 [16] Zhao L M, Liang L S, Cai J, et al. Application of low-temperature SCR flue gas denitrification technology in sintering process of Zhanjiang Iron & Steel. Sintering Pelletizing, 2022, 47(5): 89 doi: 10.13403/j.sjqt.2022.05.076赵利明, 梁利生, 蔡嘉, 等. 低温SCR烟气脱硝技术在湛江钢铁烧结工序的应用. 烧结球团, 2022, 47(5):89 doi: 10.13403/j.sjqt.2022.05.076 [17] Zhang S G, Zhang B L, Liu B, et al. A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3: Reaction mechanism and catalyst deactivation. RSC Adv, 2017, 7(42): 26226 doi: 10.1039/C7RA03387G [18] Zhang B L, Zhang S Y, Zhang S G. The use of rare earths in catalysts for selective catalytic reduction of NOx. Prog Chem, 2022, 34(2): 301张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用. 化学进展, 2022, 34(2):301 [19] Han J, He X, Qin L, et al. NOx removal coupled with energy recovery in sintering plant. Ironmak Steelmak, 2014, 41(5): 350 doi: 10.1179/1743281213Y.0000000158 [20] Liu J H, Fan Z Y, Cheng H, et al. Integration and application of key technologies for ultra-low emission of flue gas in Qiangang Pelletizing Plant. China Metall, 2020, 30(10): 98 doi: 10.13228/j.boyuan.issn1006-9356.20200464刘建辉, 范正赟, 程华, 等. 迁钢球团烟气超低排放关键技术集成与应用. 中国冶金, 2020, 30(10):98 doi: 10.13228/j.boyuan.issn1006-9356.20200464 [21] Zhou M J, Zhang D H. Technology integration and practice of ultra-low emission of sintering flue gas in Baosteel. Iron Steel, 2020, 55(2): 144周茂军, 张代华. 宝钢烧结烟气超低排放技术集成与实践. 钢铁, 2020, 55(2):144 [22] Zhang C. Research and application of low temperature denitration process in coke oven flue gas. Pet Chem Constr, 2022, 44(2): 13 doi: 10.3969/j.issn.1672-9323.2022.02.005张翠. 焦炉烟气中低温脱硝工艺的研究与应用. 石油化工建设, 2022, 44(2):13 doi: 10.3969/j.issn.1672-9323.2022.02.005 [23] Li Y G, An L, Ren C T, et al. Semi-industrial test on low temperature SCR denitrification catalyst for sintering flue gas. China Metall, 2021, 31(2): 95李永光, 安璐, 任翠涛, 等. 烧结烟气低温SCR脱硝催化剂半工业化试验. 中国冶金, 2021, 31(2):95 [24] Ji G, Dong W J, Li Q, et al. Study on ultra-low emission technology of NOx in Taigang sintering flue gas. Sintering Pelletizing, 2018, 43(2): 67冀岗, 董卫杰, 李强, 等. 太钢烧结烟气氮氧化物超低排放技术研究. 烧结球团, 2018, 43(2):67 [25] Zhou H, Ma P N, Lai Z Y, et al. Harmless treatment of waste selective catalytic reduction catalysts during iron ore sintering process. J Clean Prod, 2020, 275: 122954 doi: 10.1016/j.jclepro.2020.122954 [26] Liu X L, Guo J X, Chu Y H, et al. Desulfurization performance of iron supported on activated carbon. Fuel, 2014, 123: 93 doi: 10.1016/j.fuel.2014.01.068 [27] Gao J X, Liu J, Zeng Y, et al. Application and analysis of dry activated coke(carbon) sintering flue gas purification technology in iron and steel industry—Process and technical and economical analysis. Sintering Pelletizing, 2012, 37(1): 65 doi: 10.3969/j.issn.1000-8764.2012.01.017高继贤, 刘静, 曾艳, 等. 活性焦(炭)干法烧结烟气净化技术在钢铁行业的应用与分析(Ⅰ)——工艺与技术经济分析. 烧结球团, 2012, 37(1):65 doi: 10.3969/j.issn.1000-8764.2012.01.017 [28] Wang J J, Wang Y J, She X F, et al. Numerical study on the distribution of flue gas residence time in the desulfurization and denitrification system by the optimization of the model. Int J Chem React Eng, 2022, 20(10): 1095 doi: 10.1515/ijcre-2022-0043 [29] Wu S L, Zhang W L, Hu Z J. Properties change of activated coke for sintering flue gas purification in cyclic removal of SO2 and NOx. J Iron Steel Res Int, 2021, 28(6): 641 doi: 10.1007/s42243-020-00486-x [30] Xie W, Li X L, Lu X D, et al. Mechanism and development trend of desulfurization & denitrification of activated carbon used in flue gas purification. Clean Coal Technol, 2021, 27(6): 1解炜, 李小亮, 陆晓东, 等. 烟气净化用活性炭脱硫脱硝机理研究与发展趋势. 洁净煤技术, 2021, 27(6):1 [31] Xiang S Y, Zhang Z H, Xing X D, et al. Research progress of activated carbon for desulfurization and denitrification of sintering flue gas [J/OL]. J Iron Steel Res (2022-07-14) [2022-11-26]. https://kns.cnki.net/kcms/detail/11.2133.tf.20220713.0956.002.html向思羽, 张朝晖, 邢相栋, 等. 烧结烟气脱硫脱硝活性炭的研究进展[J/OL]. 钢铁研究学报 (2022-07-14) [2022-11-26]. https://kns.cnki.net/kcms/detail/11.2133.tf.20220713.0956.002.html [32] Han J, Yan Z H, Shao J G. Technical characteristics of counter flow active carbon-flue gas desulphurization and denitrification process and its application. Sintering Pelletizing, 2018, 43(6): 13韩健, 阎占海, 邵久刚. 逆流式活性炭烟气脱硫脱硝技术特点及应用. 烧结球团, 2018, 43(6):13 [33] Guo Y N. Application of activated carbon desulfurization and denitrification technology in coke oven flue gas. Inner Mongolia Coal Econ, 2022(12): 115 doi: 10.3969/j.issn.1008-0155.2022.12.039郭雅楠. 活性炭脱硫脱硝技术在焦炉烟气中的应用. 内蒙古煤炭经济, 2022(12):115 doi: 10.3969/j.issn.1008-0155.2022.12.039 [34] Jian K, Liu R, Wang D C. Application of activated carbon integrated desulfurization and denitrification in WISCO Coking // Proceedings of the 14th Symposium (2020) on Energy Conservation & Environment Protection and CDQ Technology in Coking Industry. Taian, 2020: 141简科, 刘睿, 王大春. 活性炭一体化脱硫脱硝在武钢焦化的应用 // 2020年(第十四届)焦化节能环保及干熄焦技术研讨会. 泰安, 2020: 141 [35] Han K, Cao J G, Xiang H F, et al. Application of activated carbon desulfurization and denitrification technology in coking plant of Anyang steel. Henan Chem Ind, 2020, 37(3): 37韩矿, 曹纪刚, 向海飞, 等. 活性炭脱硫脱硝技术在安钢焦化厂的应用. 河南化工, 2020, 37(3):37 [36] Fu W J, Fu Y M. Application of activated coke desulfurization and denitrification technology in sintering flue gas engineering. Shandong Chem Ind, 2015, 44(22): 178 doi: 10.3969/j.issn.1008-021X.2015.22.070傅文娟, 傅月梅. 活性焦脱硫脱硝技术在烧结烟气工程上的应用. 山东化工, 2015, 44(22):178 doi: 10.3969/j.issn.1008-021X.2015.22.070 [37] Jiang J, Li Q, Deng C H, et al. Application of different DeSOx and DeNOx technologies on Masteel coke plant. Fuel Chem Process, 2022, 53(1): 63 doi: 10.3969/j.issn.1001-3709.2022.1.rlyhg202201023江静, 李强, 邓成豪, 等. 两种脱硫脱硝技术在马钢的应用. 燃料与化工, 2022, 53(1):63 doi: 10.3969/j.issn.1001-3709.2022.1.rlyhg202201023 [38] Rovira M, Engvall K, Duwig C. Detailed numerical simulations of low-temperature oxidation of NOx by ozone. Fuel, 2021, 303: 121238 doi: 10.1016/j.fuel.2021.121238 [39] Ji R J, Xu W Q, Wang J, et al. Research progress of ozone oxidation denitrification technology. CIESC J, 2018, 69(6): 2353纪瑞军, 徐文青, 王健, 等. 臭氧氧化脱硝技术研究进展. 化工学报, 2018, 69(6):2353 [40] Zou Y, Liu X L, Zhu T Y, et al. Simultaneous removal of NOx and SO2 by MgO combined with O3 oxidation: The influencing factors and O3 consumption distributions. ACS Omega, 2019, 4(25): 21091 doi: 10.1021/acsomega.9b02502 [41] Yamamoto Y, Yamamoto H, Takada D, et al. Simultaneous removal of NOx and SOx from flue gas of a glass melting furnace using a combined ozone injection and semi-dry chemical process. Ozone:Sci Eng, 2016, 38(3): 211 doi: 10.1080/01919512.2015.1115335 [42] Mok Y S, Lee H J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique. Fuel Process Technol, 2006, 87(7): 591 doi: 10.1016/j.fuproc.2005.10.007 [43] Yang Y X, Xue X L, Liu Y, et al. Orthogonal experiments on ozonation denitration of iron-steel sintering flue gas. Environ Sci Technol, 2018, 41(Suppl 1): 139杨颖欣, 薛学良, 刘勇, 等. 钢铁烧结烟气臭氧氧化脱硝正交实验研究. 环境科学与技术, 2018, 41(增刊 1):139 [44] Fan B, Meng Y, Sun Y H. Oxidation denitration technology and application based on dense phase semi dry desulfurization process. China Steel Focus, 2020(21): 33范博, 孟宇, 孙宇航. 基于密相半干法脱硫工艺的氧化脱硝技术及应用. 冶金管理, 2020(21):33 [45] Guo H K. Co-denitration technology and application of COA in flue gas of 180 m2 sintering machine. Energy Conserv Environ Prot, 2018(3): 68 doi: 10.3969/j.issn.1009-539X.2018.03.018郭厚焜. 180 m2烧结机烟气COA协同脱硝技术及应用. 节能与环保, 2018(3):68 doi: 10.3969/j.issn.1009-539X.2018.03.018 [46] Zhong L, Hu X T, Zhu T L, et al. Industrial application of the ozone oxidation and synergistic absorption technology for desulfurization and denitration. China Environ Prot Ind, 2021(7): 46 doi: 10.3969/j.issn.1006-5377.2021.07.013钟璐, 胡小吐, 朱天乐, 等. 臭氧氧化协同吸收脱硫脱硝技术的工业应用. 中国环保产业, 2021(7):46 doi: 10.3969/j.issn.1006-5377.2021.07.013 [47] Wang T G. Comparative analysis of SCR denitrification and COA ozone synergistic denitrification process for sintering flue gas. Sci Technol Innov, 2020(6): 13 doi: 10.3969/j.issn.1673-1328.2020.06.008王天广. 烧结烟气SCR脱硝与COA臭氧协同脱硝工艺对比分析. 科学技术创新, 2020(6):13 doi: 10.3969/j.issn.1673-1328.2020.06.008 [48] World Metals. Review of China's ironmaking technology development in 2021[J/OL]. Mysteel (2022-03-14) [2022-11-26]. https://news.mysteel.com/22/0314/17/C69D408F112D28783.html世界金属导报. 2021年我国炼铁技术发展评述[J/OL]. 我的钢铁 (2022-03-14) [2022-11-26]. https://news.mysteel.com/22/0314/17/C69D408F112D28783.html [49] Wen B, Song B H, Sun G G, et al. Technical progress of denitration for iron-steel sintering flue gas. Environ Eng, 2017, 35(1): 103温斌, 宋宝华, 孙国刚, 等. 钢铁烧结烟气脱硝技术进展. 环境工程, 2017, 35(1):103 [50] Yao G J, Wei M R, Liu J L, et al. Application researches on ball group vertical stove desulphurization project. Ind Saf Dust Control, 2005, 31(4): 38 doi: 10.3969/j.issn.1001-425X.2005.04.016姚国建, 韦鸣瑞, 柳建龙, 等. 球团竖炉烟气脱硫工程应用研究. 工业安全与环保, 2005, 31(4):38 doi: 10.3969/j.issn.1001-425X.2005.04.016 [51] Qiao J F. Technology development and industry application progress of desulfurization and denitrification from coke oven flue gas. Nat Gas Chem Ind, 2020, 45(4): 130乔建芬. 焦炉烟气脱硫脱硝技术及产业化应用进展. 天然气化工(C1化学与化工), 2020, 45(4):130 -