• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢铁工业烟气脱硝技术应用进展及前景

张柏林 洪华 王天球 张新远 邬博宇 刘波 张深根

张柏林, 洪华, 王天球, 张新远, 邬博宇, 刘波, 张深根. 钢铁工业烟气脱硝技术应用进展及前景[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2022.11.26.001
引用本文: 张柏林, 洪华, 王天球, 张新远, 邬博宇, 刘波, 张深根. 钢铁工业烟气脱硝技术应用进展及前景[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2022.11.26.001
ZHANG Bolin, HONG Hua, WANG Tianqiu, ZHANG Xinyuan, WU Boyu, LIU Bo, ZHANG Shengen. Progress and prospects of flue gas deNOx technology for the iron and steel industry[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.11.26.001
Citation: ZHANG Bolin, HONG Hua, WANG Tianqiu, ZHANG Xinyuan, WU Boyu, LIU Bo, ZHANG Shengen. Progress and prospects of flue gas deNOx technology for the iron and steel industry[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.11.26.001

钢铁工业烟气脱硝技术应用进展及前景

doi: 10.13374/j.issn2095-9389.2022.11.26.001
基金项目: 国家自然科学基金资助项目(52204414); 佛山市人民政府科技创新专项资金资助项目(BK22BE001); 北京科技大学顺德创新学院博士后科研资助项目(2020BH012); 中央高校基本科研业务费资助项目(FRF-TP-20-097A1Z)
详细信息
    通讯作者:

    E-mail: zhangshengen@mater.ustb.edu.cn

  • 中图分类号: X511

Progress and prospects of flue gas deNOx technology for the iron and steel industry

More Information
  • 摘要: 氮氧化物(NOx)已成为我国首要大气污染物,钢铁工业是工业源NOx排放的主要来源。烧结、球团、炼焦等工序是钢铁工业NOx超低排放改造的重点,但其烟气特性与火电厂烟气存在差异,烟气脱硝技术不能完全照搬现有燃煤锅炉脱硝工艺。目前,选择性催化还原(SCR)、活性炭(焦)(AC)吸附催化、臭氧(O3)氧化协同吸收等技术已在烧结、球团、炼焦等工序成功应用,并均取得了良好效果。本文针对钢铁工业超低排放的迫切需求,梳理了钢铁工业烧结、球团、炼焦等主要工序的现有烟气脱硝技术及其应用,重点总结并对比分析了SCR技术、AC吸附催化和O3氧化协同吸收技术的应用进展及优劣势。其中,SCR技术正逐步成为钢铁工业脱硝市场的主流技术,占比超过70%,因此脱硝催化剂及其再生具有长期巨大的市场需求。AC吸附催化和O3氧化协同吸收等新型技术因其适用温度低,无需烟气升温等,在钢铁工业越来越受到青睐,将逐步得到更多钢铁企业的支持。

     

  • 图  1  烧结烟气活性炭净化工艺流程[31]

    Figure  1.  Purification process of activated carbon from sintered flue gas[31]

    图  2  逆流式CSCR系统运行成本构成[32]

    Figure  2.  Composition of running cost of reverse-flow carbon selective catalytic reduction system[32]

    图  3  O3氧化协同吸收工艺的O3消耗分布示意图[40]

    Figure  3.  O3 consumption distribution schematic diagram for O3 oxidation combined with absorption[40]

    表  1  我国钢铁工业NOx超低排放标准

    Table  1.   Ultra-low emissions of NOx for the iron and steel industry in China

    Implemented regionLimit of NOx emission for production processes (specific equipment)/(mg·m−3)Criterion number
    Sintering/pelletizing
    (sintering head/pellet
    firing machine)
    Blast furnace
    ironmaking
    (hot blast stove)
    Steel-smelting (lime
    and dolomite kiln)
    Steel rolling (heat
    treatment furnace)
    Coking (coke oven chimney)
    Nation500,
    300 (new project)
    300350,
    300 (new project)
    240,
    200 (new project)
    GB 28662—2012,
    GB 28663—2012,
    GB 28664—2012,
    GB 16717—2012
    Nation50200200150(2019) No.35
    Shanxi50200200200DB14/2249—2020
    Tianjin50200150200150DB12/1120—2022
    Hebei50150150150130DB13/2169—2018,
    DB13/2863—2018
    Shandong50150150100 (key area),
    150 (general area)
    DB37/990—2019,
    DB37/2376—2019
    Henan50150150100DB41/1954—2020,
    DB41/1955—2020
    下载: 导出CSV

    表  2  山西五麟煤焦脱硝催化剂设计参数[22]

    Table  2.   Design parameters of catalysts for Shanxi Wulin Coal Coke Co., Ltd. [22]

    Catalyst’s typeHole densityThermal expansion coefficient/℃−1Compressive strength/MPaSize of catalyst/
    (mm×mm×mm)
    Pitch/mmDensity
    /(kg·m−3)
    Cordierite honeycomb ceramic coating100 holes per inch≤1.6×10−6Axial ≥ 15;
    radial ≥ 2
    150×150 ×1252.5600–700
    ComponentsOperating temperature/℃Amount of catalysts/m3ArrangementCatalyst layersGaseous hourly space velocity/h−1Designed life/h
    V2O5-WO3/TiO2/ Cordierite250–35030.3860×60 units per layer3+16000-700024000
    下载: 导出CSV

    表  3  活性炭及介质消耗量[33]

    Table  3.   Consumption of activated carbon and others[33]

    ProjectAnnual consumptionConvert coefficientConvert to standard coal/GJ
    Activated carbon701 t29.3 MJ·kg−120529
    Electric energy1594×104 kW·h3.6 MJ·kW·h−157399
    NH31251 t11.7 MJ·kg−114662
    Coke oven gas455×104 m316.7 MJ·m−376176
    Compressed air1226×104 m31.0 MJ·m−312249
    N2701×104 m311.7 MJ·m−382157
    steam26280 t3.8 MJ·kg−199023
    water10512 t4.2 MJ·kg−144044
    Total406250
    下载: 导出CSV

    表  4  钢铁工业烟气脱硝技术优劣势对比

    Table  4.   Advantages and disadvantages of deNOx technology for the iron and steel industry

    DeNOx TechnologiesTypical routesDeNOx temperature/℃NOx removal/%AdvantagesDisadvantages
    SCR technologyWet/semidry desulfurization + SCR200-300≥80High NOx removal efficiency;
    high stability.
    High facilities and catalyst replacement cost;
    high cost for flue gas heating;
    produce hazardous waste.
    AC adsorption and catalysisAC integrated technology120-150≥50Removal of SO2 and NOx simultaneously;
    utilization of by-products;
    easy to use of waste AC.
    Low NOx removal efficiency;
    High cost of running and AC replacement;
    potential risk of AC ignition.
    O3 oxidation with absorptionO3 oxidation + wet/semidry desulfurization90-150≥70Low facilities cost;
    low floor space;
    high stability.
    Relative high running cost;
    potential risk of O3 escape;
    bad for utilization of desulfurization slag.
    下载: 导出CSV
  • [1] Yi H H, Zhong T T, Liu J, et al. Emissions of air pollutants from sintering flue gas in the Beijing-Tianjin-Hebei area and proposed reduction measures. J Clean Prod, 2021, 304: 126958 doi: 10.1016/j.jclepro.2021.126958
    [2] Zhang J L, Yu J Y, Liu Z J, et al. Current situation and trend of air pollutant emission in China’s steel industry. Iron Steel, 2021, 56(12): 1 doi: 10.13228/j.boyuan.issn0449-749x.20210068

    张建良, 尉继勇, 刘征建, 等. 中国钢铁工业空气污染物排放现状及趋势. 钢铁, 2021, 56(12):1 doi: 10.13228/j.boyuan.issn0449-749x.20210068
    [3] Cui L, Ba K M, Li F Q, et al. Life cycle assessment of ultra-low treatment for steel industry sintering flue gas emissions. Sci Total Environ, 2020, 725: 138292 doi: 10.1016/j.scitotenv.2020.138292
    [4] Tian T, Cheng Q, Zhao X, et al. Review and prospect of the development of desulfurization and denitration industry in 2019. China Environ Prot Ind, 2020(2): 23 doi: 10.3969/j.issn.1006-5377.2020.02.007

    田恬, 程茜, 赵雪, 等. 2019年脱硫脱硝行业发展评述及展望. 中国环保产业, 2020(2):23 doi: 10.3969/j.issn.1006-5377.2020.02.007
    [5] Hu B, Hu P W, Lu B, et al. NOx emission reduction by advanced reburning in grate-rotary kiln for the iron ore pelletizing production. Processes, 2020, 8(11): 1470 doi: 10.3390/pr8111470
    [6] Wang Z C, Zhou Z A, Gan M, et al. Process control technology of low NOx sintering based on coke pretreatment. J Cent South Univ, 2020, 27(2): 469 doi: 10.1007/s11771-020-4309-y
    [7] Que Z G, Ai X B, Wu S L. Reduction of NOx emission based on optimized proportions of mill scale and coke breeze in sintering process. Int J Miner Metall Mater, 2021, 28(9): 1453 doi: 10.1007/s12613-020-2103-3
    [8] Yu Y, Zhu T Y, Liu X L. Progress of ultra-low emission technology for key processes of iron and steel industry in China. Iron Steel, 2019, 54(9): 1 doi: 10.13228/j.boyuan.issn0449-749x.20190061

    于勇, 朱廷钰, 刘霄龙. 中国钢铁行业重点工序烟气超低排放技术进展. 钢铁, 2019, 54(9):1 doi: 10.13228/j.boyuan.issn0449-749x.20190061
    [9] Long H M, Ding L, Qian L X, et al. Current situation and development trend of NOx and dioxins emission reduction in sintering flue gas. Chem Ind Eng Prog, 2022, 41(7): 3865

    龙红明, 丁龙, 钱立新, 等. 烧结烟气中NOx和二噁英的减排现状及发展趋势. 化工进展, 2022, 41(7):3865
    [10] Guo Y H. Current station and tendency of purification and upgrading of blast furnace gas. J Iron Steel Res, 2020, 32(7): 525 doi: 10.13228/j.boyuan.issn1001-0963.20190274

    郭玉华. 高炉煤气净化提质利用技术现状及未来发展趋势. 钢铁研究学报, 2020, 32(7):525 doi: 10.13228/j.boyuan.issn1001-0963.20190274
    [11] Wei Q L, Ge L J, Liu S J, et al. High air temperature and low nitrogen combustion technology of top burning catenary hot blast stove. Hebei Metall, 2021(2): 64 doi: 10.13630/j.cnki.13-1172.2021.0214

    魏前龙, 葛利军, 刘世聚, 等. 顶燃式悬链线热风炉高风温低氮燃烧技术. 河北冶金, 2021(2):64 doi: 10.13630/j.cnki.13-1172.2021.0214
    [12] Xu J M, Zhu J M, Li X L, et al. Reformation and practice of low nitrogen combustion method to reduce NOx emission in steel rolling reheating furnace. Energy Metall Ind, 2021, 40(3): 42 doi: 10.3969/j.issn.1001-1617.2021.03.010

    许京铭, 朱继民, 李新林, 等. 轧钢加热炉采用低氮燃烧法降低NOx排放的改造与实践. 冶金能源, 2021, 40(3):42 doi: 10.3969/j.issn.1001-1617.2021.03.010
    [13] Dong S Y, Zhu B C. New technology of low NOx combustion in 7m battery and its application. Fuel Chem Process, 2020, 51(1): 50 doi: 10.16044/j.cnki.rlyhg.2020.01.019

    董少英, 朱百成. 7m焦炉低氮燃烧新技术及应用. 燃料与化工, 2020, 51(1):50 doi: 10.16044/j.cnki.rlyhg.2020.01.019
    [14] Zhang B L, Zhang S G, Liu B. Effect of oxygen vacancies on ceria catalyst for selective catalytic reduction of NO with NH3. Appl Surf Sci, 2020, 529: 147068 doi: 10.1016/j.apsusc.2020.147068
    [15] Zhang B L, Deng L F, Liu B, et al. Synergistic effect of cobalt and niobium in Co3-Nb-Ox on performance of selective catalytic reduction of NO with NH3. Rare Met, 2022, 41(1): 166 doi: 10.1007/s12598-021-01790-5
    [16] Zhao L M, Liang L S, Cai J, et al. Application of low-temperature SCR flue gas denitrification technology in sintering process of Zhanjiang Iron & Steel. Sintering Pelletizing, 2022, 47(5): 89 doi: 10.13403/j.sjqt.2022.05.076

    赵利明, 梁利生, 蔡嘉, 等. 低温SCR烟气脱硝技术在湛江钢铁烧结工序的应用. 烧结球团, 2022, 47(5):89 doi: 10.13403/j.sjqt.2022.05.076
    [17] Zhang S G, Zhang B L, Liu B, et al. A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3: Reaction mechanism and catalyst deactivation. RSC Adv, 2017, 7(42): 26226 doi: 10.1039/C7RA03387G
    [18] Zhang B L, Zhang S Y, Zhang S G. The use of rare earths in catalysts for selective catalytic reduction of NOx. Prog Chem, 2022, 34(2): 301

    张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用. 化学进展, 2022, 34(2):301
    [19] Han J, He X, Qin L, et al. NOx removal coupled with energy recovery in sintering plant. Ironmak Steelmak, 2014, 41(5): 350 doi: 10.1179/1743281213Y.0000000158
    [20] Liu J H, Fan Z Y, Cheng H, et al. Integration and application of key technologies for ultra-low emission of flue gas in Qiangang Pelletizing Plant. China Metall, 2020, 30(10): 98 doi: 10.13228/j.boyuan.issn1006-9356.20200464

    刘建辉, 范正赟, 程华, 等. 迁钢球团烟气超低排放关键技术集成与应用. 中国冶金, 2020, 30(10):98 doi: 10.13228/j.boyuan.issn1006-9356.20200464
    [21] Zhou M J, Zhang D H. Technology integration and practice of ultra-low emission of sintering flue gas in Baosteel. Iron Steel, 2020, 55(2): 144

    周茂军, 张代华. 宝钢烧结烟气超低排放技术集成与实践. 钢铁, 2020, 55(2):144
    [22] Zhang C. Research and application of low temperature denitration process in coke oven flue gas. Pet Chem Constr, 2022, 44(2): 13 doi: 10.3969/j.issn.1672-9323.2022.02.005

    张翠. 焦炉烟气中低温脱硝工艺的研究与应用. 石油化工建设, 2022, 44(2):13 doi: 10.3969/j.issn.1672-9323.2022.02.005
    [23] Li Y G, An L, Ren C T, et al. Semi-industrial test on low temperature SCR denitrification catalyst for sintering flue gas. China Metall, 2021, 31(2): 95

    李永光, 安璐, 任翠涛, 等. 烧结烟气低温SCR脱硝催化剂半工业化试验. 中国冶金, 2021, 31(2):95
    [24] Ji G, Dong W J, Li Q, et al. Study on ultra-low emission technology of NOx in Taigang sintering flue gas. Sintering Pelletizing, 2018, 43(2): 67

    冀岗, 董卫杰, 李强, 等. 太钢烧结烟气氮氧化物超低排放技术研究. 烧结球团, 2018, 43(2):67
    [25] Zhou H, Ma P N, Lai Z Y, et al. Harmless treatment of waste selective catalytic reduction catalysts during iron ore sintering process. J Clean Prod, 2020, 275: 122954 doi: 10.1016/j.jclepro.2020.122954
    [26] Liu X L, Guo J X, Chu Y H, et al. Desulfurization performance of iron supported on activated carbon. Fuel, 2014, 123: 93 doi: 10.1016/j.fuel.2014.01.068
    [27] Gao J X, Liu J, Zeng Y, et al. Application and analysis of dry activated coke(carbon) sintering flue gas purification technology in iron and steel industry—Process and technical and economical analysis. Sintering Pelletizing, 2012, 37(1): 65 doi: 10.3969/j.issn.1000-8764.2012.01.017

    高继贤, 刘静, 曾艳, 等. 活性焦(炭)干法烧结烟气净化技术在钢铁行业的应用与分析(Ⅰ)——工艺与技术经济分析. 烧结球团, 2012, 37(1):65 doi: 10.3969/j.issn.1000-8764.2012.01.017
    [28] Wang J J, Wang Y J, She X F, et al. Numerical study on the distribution of flue gas residence time in the desulfurization and denitrification system by the optimization of the model. Int J Chem React Eng, 2022, 20(10): 1095 doi: 10.1515/ijcre-2022-0043
    [29] Wu S L, Zhang W L, Hu Z J. Properties change of activated coke for sintering flue gas purification in cyclic removal of SO2 and NOx. J Iron Steel Res Int, 2021, 28(6): 641 doi: 10.1007/s42243-020-00486-x
    [30] Xie W, Li X L, Lu X D, et al. Mechanism and development trend of desulfurization & denitrification of activated carbon used in flue gas purification. Clean Coal Technol, 2021, 27(6): 1

    解炜, 李小亮, 陆晓东, 等. 烟气净化用活性炭脱硫脱硝机理研究与发展趋势. 洁净煤技术, 2021, 27(6):1
    [31] Xiang S Y, Zhang Z H, Xing X D, et al. Research progress of activated carbon for desulfurization and denitrification of sintering flue gas [J/OL]. J Iron Steel Res (2022-07-14) [2022-11-26]. https://kns.cnki.net/kcms/detail/11.2133.tf.20220713.0956.002.html

    向思羽, 张朝晖, 邢相栋, 等. 烧结烟气脱硫脱硝活性炭的研究进展[J/OL]. 钢铁研究学报 (2022-07-14) [2022-11-26]. https://kns.cnki.net/kcms/detail/11.2133.tf.20220713.0956.002.html
    [32] Han J, Yan Z H, Shao J G. Technical characteristics of counter flow active carbon-flue gas desulphurization and denitrification process and its application. Sintering Pelletizing, 2018, 43(6): 13

    韩健, 阎占海, 邵久刚. 逆流式活性炭烟气脱硫脱硝技术特点及应用. 烧结球团, 2018, 43(6):13
    [33] Guo Y N. Application of activated carbon desulfurization and denitrification technology in coke oven flue gas. Inner Mongolia Coal Econ, 2022(12): 115 doi: 10.3969/j.issn.1008-0155.2022.12.039

    郭雅楠. 活性炭脱硫脱硝技术在焦炉烟气中的应用. 内蒙古煤炭经济, 2022(12):115 doi: 10.3969/j.issn.1008-0155.2022.12.039
    [34] Jian K, Liu R, Wang D C. Application of activated carbon integrated desulfurization and denitrification in WISCO Coking // Proceedings of the 14th Symposium (2020) on Energy Conservation & Environment Protection and CDQ Technology in Coking Industry. Taian, 2020: 141

    简科, 刘睿, 王大春. 活性炭一体化脱硫脱硝在武钢焦化的应用 // 2020年(第十四届)焦化节能环保及干熄焦技术研讨会. 泰安, 2020: 141
    [35] Han K, Cao J G, Xiang H F, et al. Application of activated carbon desulfurization and denitrification technology in coking plant of Anyang steel. Henan Chem Ind, 2020, 37(3): 37

    韩矿, 曹纪刚, 向海飞, 等. 活性炭脱硫脱硝技术在安钢焦化厂的应用. 河南化工, 2020, 37(3):37
    [36] Fu W J, Fu Y M. Application of activated coke desulfurization and denitrification technology in sintering flue gas engineering. Shandong Chem Ind, 2015, 44(22): 178 doi: 10.3969/j.issn.1008-021X.2015.22.070

    傅文娟, 傅月梅. 活性焦脱硫脱硝技术在烧结烟气工程上的应用. 山东化工, 2015, 44(22):178 doi: 10.3969/j.issn.1008-021X.2015.22.070
    [37] Jiang J, Li Q, Deng C H, et al. Application of different DeSOx and DeNOx technologies on Masteel coke plant. Fuel Chem Process, 2022, 53(1): 63 doi: 10.3969/j.issn.1001-3709.2022.1.rlyhg202201023

    江静, 李强, 邓成豪, 等. 两种脱硫脱硝技术在马钢的应用. 燃料与化工, 2022, 53(1):63 doi: 10.3969/j.issn.1001-3709.2022.1.rlyhg202201023
    [38] Rovira M, Engvall K, Duwig C. Detailed numerical simulations of low-temperature oxidation of NOx by ozone. Fuel, 2021, 303: 121238 doi: 10.1016/j.fuel.2021.121238
    [39] Ji R J, Xu W Q, Wang J, et al. Research progress of ozone oxidation denitrification technology. CIESC J, 2018, 69(6): 2353

    纪瑞军, 徐文青, 王健, 等. 臭氧氧化脱硝技术研究进展. 化工学报, 2018, 69(6):2353
    [40] Zou Y, Liu X L, Zhu T Y, et al. Simultaneous removal of NOx and SO2 by MgO combined with O3 oxidation: The influencing factors and O3 consumption distributions. ACS Omega, 2019, 4(25): 21091 doi: 10.1021/acsomega.9b02502
    [41] Yamamoto Y, Yamamoto H, Takada D, et al. Simultaneous removal of NOx and SOx from flue gas of a glass melting furnace using a combined ozone injection and semi-dry chemical process. Ozone:Sci Eng, 2016, 38(3): 211 doi: 10.1080/01919512.2015.1115335
    [42] Mok Y S, Lee H J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique. Fuel Process Technol, 2006, 87(7): 591 doi: 10.1016/j.fuproc.2005.10.007
    [43] Yang Y X, Xue X L, Liu Y, et al. Orthogonal experiments on ozonation denitration of iron-steel sintering flue gas. Environ Sci Technol, 2018, 41(Suppl 1): 139

    杨颖欣, 薛学良, 刘勇, 等. 钢铁烧结烟气臭氧氧化脱硝正交实验研究. 环境科学与技术, 2018, 41(增刊 1):139
    [44] Fan B, Meng Y, Sun Y H. Oxidation denitration technology and application based on dense phase semi dry desulfurization process. China Steel Focus, 2020(21): 33

    范博, 孟宇, 孙宇航. 基于密相半干法脱硫工艺的氧化脱硝技术及应用. 冶金管理, 2020(21):33
    [45] Guo H K. Co-denitration technology and application of COA in flue gas of 180 m2 sintering machine. Energy Conserv Environ Prot, 2018(3): 68 doi: 10.3969/j.issn.1009-539X.2018.03.018

    郭厚焜. 180 m2烧结机烟气COA协同脱硝技术及应用. 节能与环保, 2018(3):68 doi: 10.3969/j.issn.1009-539X.2018.03.018
    [46] Zhong L, Hu X T, Zhu T L, et al. Industrial application of the ozone oxidation and synergistic absorption technology for desulfurization and denitration. China Environ Prot Ind, 2021(7): 46 doi: 10.3969/j.issn.1006-5377.2021.07.013

    钟璐, 胡小吐, 朱天乐, 等. 臭氧氧化协同吸收脱硫脱硝技术的工业应用. 中国环保产业, 2021(7):46 doi: 10.3969/j.issn.1006-5377.2021.07.013
    [47] Wang T G. Comparative analysis of SCR denitrification and COA ozone synergistic denitrification process for sintering flue gas. Sci Technol Innov, 2020(6): 13 doi: 10.3969/j.issn.1673-1328.2020.06.008

    王天广. 烧结烟气SCR脱硝与COA臭氧协同脱硝工艺对比分析. 科学技术创新, 2020(6):13 doi: 10.3969/j.issn.1673-1328.2020.06.008
    [48] World Metals. Review of China's ironmaking technology development in 2021[J/OL]. Mysteel (2022-03-14) [2022-11-26]. https://news.mysteel.com/22/0314/17/C69D408F112D28783.html

    世界金属导报. 2021年我国炼铁技术发展评述[J/OL]. 我的钢铁 (2022-03-14) [2022-11-26]. https://news.mysteel.com/22/0314/17/C69D408F112D28783.html
    [49] Wen B, Song B H, Sun G G, et al. Technical progress of denitration for iron-steel sintering flue gas. Environ Eng, 2017, 35(1): 103

    温斌, 宋宝华, 孙国刚, 等. 钢铁烧结烟气脱硝技术进展. 环境工程, 2017, 35(1):103
    [50] Yao G J, Wei M R, Liu J L, et al. Application researches on ball group vertical stove desulphurization project. Ind Saf Dust Control, 2005, 31(4): 38 doi: 10.3969/j.issn.1001-425X.2005.04.016

    姚国建, 韦鸣瑞, 柳建龙, 等. 球团竖炉烟气脱硫工程应用研究. 工业安全与环保, 2005, 31(4):38 doi: 10.3969/j.issn.1001-425X.2005.04.016
    [51] Qiao J F. Technology development and industry application progress of desulfurization and denitrification from coke oven flue gas. Nat Gas Chem Ind, 2020, 45(4): 130

    乔建芬. 焦炉烟气脱硫脱硝技术及产业化应用进展. 天然气化工(C1化学与化工), 2020, 45(4):130
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  22
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-26
  • 网络出版日期:  2023-01-12

目录

    /

    返回文章
    返回