• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数据驱动的文献辅助管线钢产线落锤撕裂韧性内禀特征关联

商春磊 王传军 刘文月 朱德鑫 汪水泽 董林硕 吴桂林 高军恒 赵海涛 张朝磊 吴宏辉

商春磊, 王传军, 刘文月, 朱德鑫, 汪水泽, 董林硕, 吴桂林, 高军恒, 赵海涛, 张朝磊, 吴宏辉. 数据驱动的文献辅助管线钢产线落锤撕裂韧性内禀特征关联[J]. 工程科学学报, 2023, 45(8): 1390-1399. doi: 10.13374/j.issn2095-9389.2022.12.19.001
引用本文: 商春磊, 王传军, 刘文月, 朱德鑫, 汪水泽, 董林硕, 吴桂林, 高军恒, 赵海涛, 张朝磊, 吴宏辉. 数据驱动的文献辅助管线钢产线落锤撕裂韧性内禀特征关联[J]. 工程科学学报, 2023, 45(8): 1390-1399. doi: 10.13374/j.issn2095-9389.2022.12.19.001
SHANG Chun-lei, WANG Chuan-jun, LIU Wen-yue, ZHU De-xin, WANG Shui-ze, DONG Lin-shuo, WU Gui-lin, GAO Jun-heng, ZHAO Hai-tao, ZHANG Chao-lei, WU Hong-hui. Prediction of the drop hammer-derived tear toughness of pipeline steel production lines using literature data and production line data[J]. Chinese Journal of Engineering, 2023, 45(8): 1390-1399. doi: 10.13374/j.issn2095-9389.2022.12.19.001
Citation: SHANG Chun-lei, WANG Chuan-jun, LIU Wen-yue, ZHU De-xin, WANG Shui-ze, DONG Lin-shuo, WU Gui-lin, GAO Jun-heng, ZHAO Hai-tao, ZHANG Chao-lei, WU Hong-hui. Prediction of the drop hammer-derived tear toughness of pipeline steel production lines using literature data and production line data[J]. Chinese Journal of Engineering, 2023, 45(8): 1390-1399. doi: 10.13374/j.issn2095-9389.2022.12.19.001

数据驱动的文献辅助管线钢产线落锤撕裂韧性内禀特征关联

doi: 10.13374/j.issn2095-9389.2022.12.19.001
基金项目: 国家自然科学基金面上资助项目(52071023)
详细信息
    通讯作者:

    刘文月,E-mail: liuwenyue@ansteel.com.cn

    高军恒,E-mail: junhenggao@ustb.edu.cn

  • 中图分类号: TG142

Prediction of the drop hammer-derived tear toughness of pipeline steel production lines using literature data and production line data

More Information
  • 摘要: 管道运输是当前长距离输送石油、天然气等能源最经济的方式之一,具有优异的低温韧性是保证管线钢安全运输的重要特征。落锤撕裂试验(Drop weight tear testing,DWTT)是衡量管线钢低温韧性的最有效的方法。在目前的工作中,根据钢厂提供的产线数据集和文献收集的管线钢数据集,建立了基于机器学习的DWTT剪切面积预测模型。基于纯产线数据和文献数据辅助的产线数据构造了两种机器学习策略方案,测试了不同机器学习算法,效果最好的均是随机森林模型,策略一的纯产线数据模型的性能指标皮尔逊相关系数(PCC)为0.64,策略二的文献数据辅助的产线数据模型的性能指标皮尔逊相关系数(PCC)为0.92,文献数据的增加有效提高了DWTT剪切面积预测精度。机器学习技术为优化和预测DWTT剪切面积提供了一种新的思路。

     

  • 图  1  本研究中机器学习策略流程图

    Figure  1.  Flowchart of machine learning strategies in this study.

    图  2  产线数据的机器学习模型结果. (a)6种机器学习模型在产线数据上的皮尔逊相关系数(PCC)和平均绝对误差(MAE)值;(b)实验值与RF模型预测值的比较(所有模型均通过10折交叉验证进行评估)

    Figure  2.  Machine learning (ML) model results for production line data: (a) pearson correlation coefficient (PCC) and mean absolute error (MAE) values of six ML models on production line data; (b) comparison between the experimental values and the predicted values of the RF model (All models were evaluated with 10-fold cross-validation)

    图  3  DWTT 36个特征的Pearson相关系数图(在特征集的相关系数矩阵中,颜色越深,相关性越高)

    Figure  3.  Pearson correlation coefficient diagram of 36 features of DWTT (In the correlation coefficient matrix of the feature set, the deeper the color, the higher the correlation)

    图  4  管线钢DWTT的特征筛选过程. (a)13个特征子集的平均重要性得分按升序排列;每个可能的特征子集RF模型的(b)皮尔逊相关系数(PCC)和(c)平均绝对误差(MAE)值分布

    Figure  4.  Feature screening process of pipeline steel DWTT: (a) the average importance scores of 13 feature subsets are ranked in ascending order; the distribution of (b) pearson correlation coefficient (PCC) and (c) mean absolute error (MAE) values for each possible feature subset RF model

    图  5  文献数据辅助的产线数据机器学习模型结果. (a)6种机器学习模型在文献数据辅助的产线数据集上的皮尔逊相关系数(PCC)和平均绝对误差(MAE);(b)实验值与RF模型预测值的比较(所有模型均通过10折交叉验证进行评估)

    Figure  5.  Results of the machine learning model on the combination of literature data and production line data: (a) pearson correlation coefficient (PCC) and mean absolute error (MAE) of six machine learning models on the combination of literature data and production line data; (b) comparison between the experimental and predicted values of the RF model (All models were evaluated with 10-fold cross-validation)

    表  1  DWTT产线数据集中27个量

    Table  1.   Twenty-seven values in the DWTT production line dataset

    Input/outputAbb.DescriptionMaxMinMean
    InputsFeMass fraction of iron/%97.95297.64097.803
    CMass fraction of carbon/%0.0900.0500.063
    SiMass fraction of silicon/%0.2500.1500.204
    MnMass fraction of manganese/%1.7001.5501.618
    PMass fraction of phosphorus/%0.0180.0080.013
    SMass fraction of sulfur/%0.0030.0010.002
    NiMass fraction of nickel/%0.0200.0000.007
    CrMass fraction of chromium/%0.2200.0180.123
    MoMass fraction of molybdenum/%0.0900.0500.069
    TiMass fraction of titanium/%0.0170.0080.012
    CuMass fraction of copper/%0.0240.0000.010
    VMass fraction of vanadium/%0.0160.0000.002
    AlMass fraction of aluminum/%0.0440.0160.030
    NMass fraction of nitrogen/%0.0080.0010.004
    NbMass fraction of niobium/%0.0500.0300.039
    BMass fraction of boron/%0.00030.00010.0001
    CeqCarbon equivalent0.4040.3390.374
    THThickness/mm181216.838
    HVVickers hardness268169200.575
    UTSTensile strength/MPa746493613.817
    YSYield strength/MPa638400535.162
    ELElongation/%502041.465
    YRYield strength to tensile strength ratio0.960.680.872
    STSecondary rolling temperature/°C1079654898.165
    FTFinal rolling temperature/°C886666837.054
    TTETest temperature/°C−15−20−15.441
    OutputSAShear area/%1008895.132
    下载: 导出CSV

    表  2  DWTT文献数据集中20个量

    Table  2.   Twenty values in DWTT literature dataset

    Input/outputAbb.DescriptionMaxMinMean
    InputsFeMass fraction of iron/%98.1895.6397.680
    CMass fraction of carbon/%0.1050.0350.055
    SiMass fraction of silicon/%0.400.000.237
    MnMass fraction of manganese/%1.941.101.657
    PMass fraction of phosphorus/%0.0160.000.007
    SMass fraction of sulfur/%0.0130.000.002
    NiMass fraction of nickel/%0.400.000.081
    CrMass fraction of chromium/%0.300.000.051
    MoMass fraction of molybdenum/%0.300.000.090
    TiMass fraction of titanium/%0.330.000.021
    CuMass fraction of copper/%0.300.000.050
    VMass fraction of vanadium/%0.500.000.025
    AlMass fraction of aluminum/%0.040.000.008
    NbMass fraction of niobium/%0.500.000.036
    THThickness/mm38.507.5021.715
    UTSTensile strength/MPa1023540649.327
    YSYield strength/MPa951469559.944
    ELElongation/%57834.131
    TTETest temperature/°C0−80−29.019
    OutputSAShear area/%100980.014
    下载: 导出CSV

    表  3  原子特征列表

    Table  3.   List of atomic features

    Abb.DescriptionFormulaReferences
    DPEFePE difference (Fe-based)$\mathop { {\text{d} }A}\nolimits^K = \sqrt {\displaystyle\sum\nolimits_{i = 1}^n {\mathop a\nolimits_i \mathop {\left( {1 - \frac{ {\mathop A\nolimits_i } }{ {\mathop A\nolimits_k } } } \right)}\nolimits^2 } }$[8,3235]
    DPECPE difference (C-based)
    DVEFeVE difference (Fe-based)
    DVECVE difference (C-based)
    DARFeAR difference (Fe-based)
    CDORMean concentration of DOR${\text{CA} } = \frac{ {\displaystyle\sum\nolimits_{i = 1}^n {\mathop a\nolimits_i \mathop A\nolimits_i } } }{ {\displaystyle\sum\nolimits_{i = 1}^n {\mathop a\nolimits_i \mathop { {\text{AN} } }\nolimits_i } } }$
    CVEMean concentration of VE
    CMRMean concentration of MR
    CCSMean concentration of CS
    CCRMean concentration of CR
    CPEMean concentration of PE
    CAMMean concentration of AM
    EBEElectron binding energies
    ANAtomic number$A = \displaystyle\sum\limits_{i = 1}^n {\mathop a\nolimits_i \mathop A\nolimits_i }$
    AMAtomic mass
    PRPoisson’s ratio
    MPMelting point
    YMYoung’s modulus
    BPBoiling point
    NENumber of elements
    CECohesive energy
    DENdensity
    E1First ionization energy
    DORWaber–Cromer pseudopotential radii
    TVEValance electron
    MRMetallic radius
    CSPettifor chemical scale
    CRClementi’s atomic radii
    PEPauling electronegativity
    ARAtomic radii
    MVMolar volume
    下载: 导出CSV
  • [1] Yoo J Y, Ahn S S, Seo D H, et al. New development of high grade X80 to X120 pipeline steels. Mater Manuf Process, 2011, 26(1): 154 doi: 10.1080/10426910903202534
    [2] Li H L, Ji L, Kang T W. Significant technical progress in the West-East Gas Pipeline Projects-Line One and Line Two. Nat Gas Ind, 2010, 30(4): 1

    李鹤林, 吉玲, 康田伟. 西气东输一、二线管道工程的几项重大技术进步. 天然气工业, 2010, 30(4):1
    [3] Ji L K, Feng H, Zhang J M, et al. Strain-hardening behavior of high grade linepipe steel and its influence factors. J Xian Shiyou Univ (Nat Sci Ed), 2017, 32(3): 99

    吉玲康, 封辉, 张继明, 等. 高钢级管线钢形变硬化行为及其影响因素分析. 西安石油大学学报(自然科学版), 2017, 32(3):99
    [4] Ren Z P, Li D G, Li X W, et al. Construction and thinking of big data research and development platform for steel enterprises. J Iron Steel Res, 2021, 33(11): 1118 doi: 10.13228/j.boyuan.issn1001-0963.20200276

    任子平, 李德刚, 李晓伟, 等. 钢铁企业大数据研发平台的建设与思考. 钢铁研究学报, 2021, 33(11):1118 doi: 10.13228/j.boyuan.issn1001-0963.20200276
    [5] Wang G D, Liu Z Y, Zhang D H, et al. Transformation and development of materials science and technology and construction of iron and steel innovation infrastructure. J Iron Steel Res, 2021, 33(10): 1003 doi: 10.13228/j.boyuan.issn1001-0963.20210053

    王国栋, 刘振宇, 张殿华, 等. 材料科学技术转型发展与钢铁创新基础设施的建设. 钢铁研究学报, 2021, 33(10):1003 doi: 10.13228/j.boyuan.issn1001-0963.20210053
    [6] Li X R, Ban X J, Yuan Z L, et al. Review on deep learning models for time series forecasting in industry. Chin J Eng, 2022, 44(4): 757

    李潇睿, 班晓娟, 袁兆麟, 等. 工业场景下基于深度学习的时序预测方法及应用. 工程科学学报, 2022, 44(4):757
    [7] Geng X X, Mao X P, Wu H H, et al. A hybrid machine learning model for predicting continuous cooling transformation diagrams in welding heat-affected zone of low alloy steels. J Mater Sci Technol, 2022, 107: 207 doi: 10.1016/j.jmst.2021.07.038
    [8] Chen Y M, Wang S Z, Xiong J, et al. Identifying facile material descriptors for Charpy impact toughness in low-alloy steel via machine learning. J Mater Sci Technol, 2023, 132: 213 doi: 10.1016/j.jmst.2022.05.051
    [9] Fürnkranz J, Gamberger D, Lavrač N. Foundations of Rule Learning. Lodon: Springer Science & Business Media, 2012
    [10] Jiang X, Jia B R, Zhang G F, et al. A strategy combining machine learning and multiscale calculation to predict tensile strength for pearlitic steel wires with industrial data. Scripta Mater, 2020, 186: 272 doi: 10.1016/j.scriptamat.2020.03.064
    [11] Zhao J H, Wang X Q, Kang J, et al. Crack propagation behavior during DWTT for X80 pipeline steel processed via ultra-fast cooling technique. Chin J Mater Res, 2017, 31(10): 728 doi: 10.11901/1005.3093.2016.055

    赵金华, 王学强, 康健, 等. 超快冷工艺下X80管线钢的DWTT裂纹扩展行为. 材料研究学报, 2017, 31(10):728 doi: 10.11901/1005.3093.2016.055
    [12] Jiang C L, Lin T, Zhu J Y. Research on low-temperature DWTT of 33 mm thick-wall X80 pipeline steel plate. Iron Steel Vanadium Titanium, 2019, 40(4): 158 doi: 10.7513/j.issn.1004-7638.2019.04.029

    蒋昌林, 林涛, 诸建阳. 33 mm壁厚X80管线钢板的低温落锤撕裂研究. 钢铁钒钛, 2019, 40(4):158 doi: 10.7513/j.issn.1004-7638.2019.04.029
    [13] Lu C J, Shao C J, Zhang L, et al. Experimental research on DWTT performance of high-strength pipeline steel. J Iron Steel Res, 2019, 31(12): 1065

    陆春洁, 邵春娟, 张磊, 等. 高强度管线钢落锤撕裂性能的试验. 钢铁研究学报, 2019, 31(12):1065
    [14] Huo X X, Zhou P, Huang S W, et al. Effect of the microstructure on the DWTT properties of X70 pipeline steel. Shandong Metall, 2011, 33(5): 99 doi: 10.3969/j.issn.1004-4620.2011.05.036

    霍孝新, 周平, 黄少文, 等. X70管线钢微观组织结构对落锤性能的影响. 山东冶金, 2011, 33(5):99 doi: 10.3969/j.issn.1004-4620.2011.05.036
    [15] Liu B, Wei F, Zhao Y, et al. Development and performance study of X80 Φ1422 mm × 38.5 mm thick wall SAWL pipe. Welded Pipe Tube, 2021, 44(1): 1

    刘斌, 韦奉, 赵勇, 等. X80钢级Ф1422 mm×38.5 mm大壁厚直缝埋弧焊管的开发及性能研究. 5焊管, 2021, 44(1):1
    [16] Su D X, Xu W C. Research on influence of specimen thickness and drop weight test method on X70 pipeline steel DWTT performance. Welded Pipe Tube, 2018, 41(7): 21

    苏大雄, 徐惟诚. 试样厚度及落锤试验方式对X70 DWTT性能影响的研究. 焊管, 2018, 41(7):21
    [17] Gao Y, Jiang J X, Zuo X R, et al. Microstructures and fracture behaviors in heavy thick multi-phase X80 pipeline steel. J Netshape Form Eng, 2018, 10(6): 43 doi: 10.3969/j.issn.1674-6457.2018.06.008

    高燕, 姜金星, 左秀荣, 等. 厚规格多相组织X80管线钢组织控制与断裂行为研究. 精密成形工程, 2018, 10(6):43 doi: 10.3969/j.issn.1674-6457.2018.06.008
    [18] Agrawal A, Deshpande P D, Cecen A, et al. Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integr Mater Manuf Innov, 2014, 3(1): 90 doi: 10.1186/2193-9772-3-8
    [19] Strnadel B, Ferfecki P, Židlík P. Statistical characteristics of fracture surfaces in high-strength steel drop weight tear test specimens. Eng Fract Mech, 2013, 112-113: 1 doi: 10.1016/j.engfracmech.2013.10.001
    [20] Hwang B, Shin S Y, Lee S, et al. Effect of microstructure on drop weight tear properties and inverse fracture occurring in hammer impacted region of high toughness X70 pipeline steels. Mater Sci Technol, 2008, 24(8): 945 doi: 10.1179/174328406X148732
    [21] Sha Q Y, Li D H. Microstructure, mechanical properties and hydrogen induced cracking susceptibility of X80 pipeline steel with reduced Mn content. Mater Sci Eng A, 2013, 585: 214 doi: 10.1016/j.msea.2013.07.055
    [22] Hwang B, Kim Y G, Lee S, et al. Effective grain size and charpy impact properties of high-toughness X70 pipeline steels. Metall Mater Trans A, 2005, 36(8): 2107 doi: 10.1007/s11661-005-0331-9
    [23] Zhang J M, Sun W H, Sun H. Mechanical properties and microstructure of X120 grade high strength pipeline steel. J Iron Steel Res Int, 2010, 17(10): 63 doi: 10.1016/S1006-706X(10)60185-9
    [24] You Y, Shang C J, Nie W J, et al. Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content. Mater Sci Eng A, 2012, 558: 692 doi: 10.1016/j.msea.2012.08.077
    [25] Matrosov Y I, Bagmet O, Nosochenko A. Development of modern heavy plate steels for pipelines. Proceedings of the Materials Science Forum, 2007, 539-543: 4756 doi: 10.4028/www.scientific.net/MSF.539-543.4756
    [26] Johnson J, Hudson M, Takahashi N, et al. Specification and manufacturing of pipes for the X100 operational trial // Proceedings of 2008 7th International Pipeline Conference. Calgary, 2009: 453
    [27] Hillenbrand H G, Liessem A, Grimpe F, et al. Manufacturing of X100 pipes for the TAP project // Proceedings of the International Pipeline Conference. Calgary, 2006: 261
    [28] Zha C H, Jiang Z H, Wang W J, et al. Research and development of heavy wall X80 transmission pipeline steel with high deformation characteristics for polar environments at Shougang steel // Proceedings of the International Pipeline Conference. Calgary, 2012: 249
    [29] Aihara S, Lange H I, Misawa K, et al. Full-scale burst test of hydrogen gas X65 pipeline // Proceedings of 2010 8th International Pipeline Conference. Calgary, 2010: 415
    [30] Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245): 255 doi: 10.1126/science.aaa8415
    [31] Chai T, Draxler R. Root mean square error (RMSE) or mean absolute error (MAE)? –Arguments against avoiding RMSE in the literature. Geosci Model Dev, 2014, 7: 1247 doi: 10.5194/gmd-7-1247-2014
    [32] Pauling L. The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J Am Chem Soc, 1932, 54(9): 3570
    [33] Waber J, Cromer D T. Orbital radii of atoms and ions. J Chem Phys, 1965, 42(12): 4116 doi: 10.1063/1.1695904
    [34] Clementi E, Raimondi D L. Atomic screening constants from SCF functions. J Chem Phys, 1963, 38(11): 2686 doi: 10.1063/1.1733573
    [35] Rabe K M, Phillips J C, Villars P, et al. Global multinary structural chemistry of stable quasicrystals, high-TC ferroelectrics, and high-Tc superconductors. Phys Rev B Condens Matter, 1992, 45(14): 7650 doi: 10.1103/PhysRevB.45.7650
    [36] Zhang Y, Wen C, Wang C X, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Mater, 2020, 185: 528 doi: 10.1016/j.actamat.2019.11.067
    [37] He J J, Li J J, Liu C B, et al. Machine learning identified materials descriptors for ferroelectricity. Acta Mater, 2021, 209: 116815 doi: 10.1016/j.actamat.2021.116815
    [38] Romanski P, Kotthoff L, Kotthoff M L. Package ‘FSelector’ [J/OL]. Sciencepaper Online (2009-10-29) [2022-12-19]. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=52ee687db3d94ec2143ab44021a303301ad133b1
    [39] Chandrashekar G, Sahin F. A survey on feature selection methods. Comput Electr Eng, 2014, 40(1): 16 doi: 10.1016/j.compeleceng.2013.11.024
    [40] James G, Witten D, Hastie T, et al. An Introduction to Statistical Learning. New York: springer, 2013
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  75
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-19
  • 网络出版日期:  2023-03-07
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回