张浩杰, 姜峰, 刘传凯, 张作宇, 李擎. 星球车自主路径规划方法[J]. 工程科学学报, 2024, 46(11): 2063-2075. DOI: 10.13374/j.issn2095-9389.2024.01.04.001
引用本文: 张浩杰, 姜峰, 刘传凯, 张作宇, 李擎. 星球车自主路径规划方法[J]. 工程科学学报, 2024, 46(11): 2063-2075. DOI: 10.13374/j.issn2095-9389.2024.01.04.001
ZHANG Haojie, JIANG Feng, LIU Chuankai, ZHANG Zuoyu, LI Qing. Review of autonomous path planning for planetary rovers[J]. Chinese Journal of Engineering, 2024, 46(11): 2063-2075. DOI: 10.13374/j.issn2095-9389.2024.01.04.001
Citation: ZHANG Haojie, JIANG Feng, LIU Chuankai, ZHANG Zuoyu, LI Qing. Review of autonomous path planning for planetary rovers[J]. Chinese Journal of Engineering, 2024, 46(11): 2063-2075. DOI: 10.13374/j.issn2095-9389.2024.01.04.001

星球车自主路径规划方法

Review of autonomous path planning for planetary rovers

  • 摘要: 自主路径规划是星球车执行地外星球探测任务的一项核心技术,有助于星球车安全、高效地运动到任务点. 然而,由于地外星球环境的特殊性、星球车与地面控制站之间的通信时延和通信带宽限制,星球车的自主路径规划与地面移动机器人的相应技术相比面临更大的挑战性,比如光照有限、地形未知且难以预测、环境特征单一和轮地交互难以精确建模等. 因此,在存在不完全的环境信息和不确定的位置信息的情况下,如何为星球车生成一条安全、高效、合理的可通行路径是当前的研究热点. 从研究进展和工程应用两个角度分析梳理星球车感知地图构建和自主路径规划等关键技术的进展. 首先,总结了基于双目视觉的感知地图构建方法的研究进展,这种方法根据双目视觉信息获取视差图,从而构建星球表面数字高程地图模型. 在获取视差图时通常采用立体匹配算法,对基于区域的匹配算法和基于特征的匹配算法两类主流方法进行了分析. 其次,将现有的星球车自主路径规划方法总结为基于代价评估的路径规划方法与基于机器学习的路径规划方法两类,重点概括总结了基于备选弧的自主路径规划方法原理及其在已发射星球车路径规划中的迭代应用情况. 分类分析了基于A*启发式搜寻算法、快速随机探索树算法和快速行进法的自主路径规划方法在星球车上的应用前景. 将机器学习在星球车自主路径规划中的应用分为端到端路径规划方法与基于机器学习的辅助路径规划方法两类进行总结梳理. 最后,基于对星球车自主路径规划的关键技术分析,从增强星球车感知能力、改进备选弧、减小星球车滑移、结合多种路径规划方法以及加强机器学习的应用五个方面对未来星球车自主路径规划方法的研究方向进行了探讨和展望.

     

    Abstract: Autonomous path planning represents a cornerstone technology for enabling planetary rovers to carry out exploration missions on extraterrestrial planets. This technology facilitates planetary rovers in navigating safely and efficiently toward their mission goal. However, the special conditions of extraterrestrial planetary environments pose significant challenges for autonomous path planning compared with those faced by ground-based mobile robots. These challenges include communication delays and bandwidth limitations between the planetary rover and the ground control station, limited light, unknown and unpredictable terrain, distinct environmental features, and the difficulty of accurately modeling interactions between the rover wheels and the ground. Therefore, addressing how to generate a safe, efficient, and reasonable traversable path for a planetary rover under conditions of incomplete environmental data and uncertain positioning is a focal point of current research. This paper reviews advancements in perception map construction and autonomous path planning for planetary rovers, examining both research progress and engineering applications. First, this paper summarizes advances in perception map construction methods that rely on binocular vision. This method uses stereo vision to generate parallax maps, which in turn help construct a digital elevation model of the planet’s surface. Stereo matching algorithms are typically used to acquire parallax maps. The discussion includes an analysis of two main types of methods: region-based matching algorithms and feature-based matching algorithms. Second, the paper classifies existing autonomous path-planning methods for planetary rovers into two categories: those based on cost evaluation and those leveraging machine learning. As a typical representative of cost-evaluation–based path planning methods, the optional arc-based autonomous path planning method is spotlighted for its algorithmic principles and iterative applications in ongoing planetary rover missions. Furthermore, the potential of A* heuristic search algorithm, rapidly-exploring random tree star (RRT*) algorithm, and fast marching method(FMM) algorithms for enhancing planetary rover path planning is explored in a categorical manner. The application of machine learning in autonomous path planning for planetary rovers is also reviewed. Such methods are classified into two groups: end-to-end path planning methods and auxiliary approaches leveraging machine learning. Ultimately, based on the above analysis of the key technologies of planetary rover autonomous path planning, the paper identifies and discusses future research directions for improving autonomous path planning methods for planetary rovers. These include enhancing perception capabilities, improving optional arc paths, reducing slippage, integrating multiple path planning methods, and strengthening the use of machine learning.

     

/

返回文章
返回