基于凸优化方法的高精度回归轨道最优控制(注:ICGNC2024推荐优秀论文)

Optimal control for high-precision repeat ground-track orbits via convex optimization

  • 摘要: 为满足回归轨道的高精度维持要求,研究了一种基于微分代数运算和考虑完全摄动因素的引力模型下回归轨道设计与控制的半解析方法。通过对Poincaré映射进行高阶Taylor展开以获得轨道在一个或者多个回归周期内的状态量。该方法可快速实现高精度回归轨道初值求解。设计了实现轨道满足回归条件的多脉冲控制策略,并通过二阶凸优化方法获得全局最优的控制量和控制时机。所提出的轨道控制策略同时适用于脉冲推力和连续推力两种模式,并具备计算效率高和唯一解的优点,可用于星上自主实施。

     

    Abstract: To satisfy the requirement of high-precision maintenance for repeat ground-track orbits, a method for the design and control for the orbits in high-fidelity dynamics is presented. The method is based on the use of high-order expansion of Poincaré maps to propagate regions of the phase space forward in time for one, or more, repeating cycles. This allows us to identify initial conditions that ensure repetition of ground-tracks with high accuracy. These conditions are targeted by the spacecraft with a multiple-impulse control strategy that is optimized via Second-Order Cone Programming. The resulting approach is suitable for both impulsive- and continuous-thrust propulsion systems and can be implemented onboard thanks to the convex formulation of the problem.

     

/

返回文章
返回