• 《工程索引》(EI)刊源期刊
  • Scopus
  • 中文核心期刊
  • 中国科学引文数据库来源期刊

热疗机器人在网络病治疗中的应用

殷雪艳, 石飞飞, 王进强, 宁焕生

殷雪艳, 石飞飞, 王进强, 宁焕生. 热疗机器人在网络病治疗中的应用[J]. 工程科学学报. DOI: 10.13374/j.issn2095-9389.2024.07.30.005
引用本文: 殷雪艳, 石飞飞, 王进强, 宁焕生. 热疗机器人在网络病治疗中的应用[J]. 工程科学学报. DOI: 10.13374/j.issn2095-9389.2024.07.30.005
YIN Xueyan, SHI Feifei, WANG Jinqiang, NING Huansheng. Application of hyperthermia robots in Cyber-syndrome treatment[J]. Chinese Journal of Engineering. DOI: 10.13374/j.issn2095-9389.2024.07.30.005
Citation: YIN Xueyan, SHI Feifei, WANG Jinqiang, NING Huansheng. Application of hyperthermia robots in Cyber-syndrome treatment[J]. Chinese Journal of Engineering. DOI: 10.13374/j.issn2095-9389.2024.07.30.005

热疗机器人在网络病治疗中的应用

基金项目: 国家自然科学基金资助项目(61872038)
详细信息
    通信作者:

    宁焕生: E-mail: ninghuansheng@ustb.edu.cn

  • 分类号: TG242.3

Application of hyperthermia robots in Cyber-syndrome treatment

More Information
  • 摘要:

    网络病指的是因过度使用互联网或电子设备,导致身体和心理上的一系列问题,例如眼睛疲劳、焦虑症等. 随着互联网的普及和移动设备的广泛使用,长时间使用电脑屏幕和手机导致的网络病已成为影响人们健康的一大问题. 热疗法作为治疗网络病的重要方法之一,精准控制热疗温度是关键,但受医师经验差异的限制,其推广受到制约. 热疗机器人基于深度学习技术精准识别热疗区域,通过温控系统实时调节温度,具有操作稳定、精准和高效等优点,能够提高热疗法的安全率,并能够避免一些人为因素带来的风险. 本文围绕国内外热疗机器人在网络病治疗中的应用现状进行分析,在此基础上,阐述了热疗技术、目标区域导航与定位技术、机器人结构设计和安全保护技术等四方面关键技术,并分析目前存在的不足,系统展望了该技术在网络病治疗中的发展趋势.

    Abstract:

    Cyber-syndrome refers to a range of physical and psychological issues, such as eyestrain and anxiety, caused by excessive use of the Internet or electronic devices. With the growing prevalence of mobile devices and prolonged screen exposure, Cyber-syndrome has become a significant health concern. Various treatment approaches have been explored, including Chinese medicine and Western medicine. Chinese medicine emphasizes holistic conditioning by regulating the body’s internal environment to achieve therapeutic effects, with heat therapy being a commonly used treatment method. Although heat therapy plays a crucial role in treating Cyber-syndrome, its effectiveness depends on precise temperature control and accurate targeting of the affected areas. Traditional heat therapy relies on manual positioning and temperature adjustment, which is highly dependent on the physician’s experience, which limits its widespread adoption. Thermotherapy robots address these limitations by utilizing deep learning technology to accurately identify treatment areas and dynamically adjust temperature through an automated control system. These robots offer advantages such as stable operation, high precision, and improved efficiency, enhancing the safety of thermotherapy while reducing risks associated with human error. This study analyzes the current state of thermotherapy robot applications in Cyber-syndrome treatment, both at home and abroad. It summarizes the structure and working principles of six types of thermotherapy robots (including four domestic robots and two foreign robots), and makes a comparative analysis from the aspects of hyperthermia types, positioning methods, advantages, and targeting Cyber-syndrome. Compared with domestic research, foreign research in this area is scarcer, but the field as a whole shows a good development trend and broad application prospects. The results indicate that most existing thermotherapy robots have achieved full automation, with advantages such as high efficiency, personalization, and safety. Traditional technologies are now integrated with artificial intelligence techniques, such as big data analysis and visualization algorithms, enabling more precise and personalized treatment services that effectively alleviate the symptoms of Cyber-syndrome. Furthermore, this study explores key technologies in four areas: thermotherapy techniques (basic technical principles, providing theoretical support for the operation of thermal therapy robots), target area navigation and positioning (key to achieving precise treatment), robotic structural design (core structure of thermal therapy robots), and safety protection mechanisms (key parts of thermal therapy robot systems), while also analyzing existing limitations. Currently, thermotherapy robot research remains in its early stages, and its application in Cyber-syndrome treatment has not yet been thoroughly explored. Challenges such as robotic arm flexibility, treatment accuracy for Cyber-syndrome, and doctor-patient interaction dynamics require further investigation. Finally, this study systematically examines the future development trends of thermotherapy robots in Cyber-syndrome treatment, aiming to provide insights for manufacturers and researchers in this field. As a key direction in digital healthcare, thermotherapy robots should be further studied from multiple perspectives, including the integration of multimodal human vital sign monitoring, 5G technology, and human-computer interaction techniques, as well as the refinement of evaluation systems. These advancements will enhance the flexibility, precision, and intelligence of thermotherapy robots, while the integration of emerging technologies such as 5G will promote the construction of future smart healthcare.

  • 图  1   热疗机器人示例图像. (a) 智林热疗机器人(来源网络); (b) 千域热疗机器人(来源网络)

    Figure  1.   Images of hyperthermia robots: (a) Cilin hyperthermia robot (source: network); (b) Chainure hyperthermia robot (source: network)

    图  2   国内典型热疗机器人图像. (a) 灵手热疗机器人[12]; (b) 秀域超V热动力AR机器人(来源网络); (c) 热奈AI机器人(来源网络); (d) 钧控JFR-6艾灸机器人(来源网络)

    Figure  2.   Images of typical domestic hyperthermia robots: (a) LSCURE hyperthermia robot[12]; (b) Showyu augmented reality robot (source: network); (c) Genay AI robot (source: network); (d) Junctrl JFR-6 robot (source: network)

    图  3   国外典型热疗机器人图像. (a) 菲尔机器人(来源网络); (b) 赛芭莱儿(来源网络)

    Figure  3.   Images of typical foreign hyperthermia robots: (a) Phill robot (source: network); (b) Cebalair Human Tecar robot (source: network)

    图  4   关键技术逻辑

    Figure  4.   Logical framework of key technologies

    图  5   三类机器人结构图像. (a) 仿生式机械手[51]; (b) 便携式机器人[52]; (c) 平台式机器人[12]

    Figure  5.   Three types of robot structures: (a) bionic manipulator[51]; (b) portable robot[52]; (c) platform robot[12]

    表  1   不同范畴内的疾病对比

    Table  1   Comparison of diseases across different categories

    Category Disease name Causes and symptoms Treatment methods Reference
    Within the scope of Cyber-syndrome Computer vision syndrome Caused by prolonged computer use, excessive screen brightness, and extended eye focus; primarily manifests as eye fatigue and dryness. Eyelid gland massage combined with hot compress therapy [25]
    Mouse hand (Carpal tunnel syndrome) Caused by prolonged use of a mouse and keyboard, poor posture, etc.; primarily manifests as wrist numbness and pain. Microwave therapy for the wrist joint [26]
    Cervical and lumbar spine diseases Caused by poor sitting posture and prolonged “head-down” posture due to excessive internet use; primarily manifests as neck and lower back soreness and stiffness. Acupressure applied to specific acupoints, combined with heat-sensitive moxibustion therapy [2728]
    Within the scope of common diseases Eye diseases A broad category of diseases attributed to environmental factors, gender, age, and congenital factors; primarily manifest as conditions such as glaucoma and strabismus. Acupuncture, adequate rest, and surgical treatment [25,29]
    Tendonitis Caused by excessive use of a specific tendon during physical labor; primarily manifests as hand stiffness, pain, and restricted movement. Acupotomy, local injections, and massage therapy [30]
    Cervical and lumbar spine disease Caused by age-related degeneration, trauma, or physical labor; primarily manifests as radiating pain with numbness. Physical therapy, medication, and surgical intervention [31]
    下载: 导出CSV

    表  2   国内外热疗机器人对比

    Table  2   Comparison of hyperthermia robots at home and abroad

    Region R&D company Name Hyperthermia type Acupoint identification method Usage Advantages Targeted Cyber-syndrome
    Domestic LSCURE Moxibustion therapeutic robot Local hyperthermia Visual system Fully automated Capable of performing various traditional moxibustion techniques Mouse hand, Computer neck, Lumbar strain
    Showyu Super V thermal power AR robot Infrared hyperthermia, Targeted hyperthermia 3D structured light visual scanning Fully automated Provides personalized treatment using big data technology Computer neck, Lumbar strain
    Deyeemed Genay AI robot Surface hyperthermia AI vision algorithm Semi-automated High accuracy in recognizing body contours and target therapy areas Mouse hand, Lumbar strain
    Junctrl JFR-6 robot Surface hyperthermia Laser infrared positioning system Semi-automated Uses an intelligent tongue diagnostic instrument for personalized, precise hyperthermia treatment CVS, Computer neck
    Abroad AIbotics Phill robot Ultrasonic hyperthermia Sensor camera Fully automated Foldable design for easy storage; allows users to manually adjust temperature Computer neck, Lumbar strain
    Cebalair Human Tecar Radiofrequency hyperthermia Artificial recognition Hand-operated Uses electromagnetic radiofrequency signals to generate internal heat within tissues Computer neck, Lumbar strain
    下载: 导出CSV

    表  3   热疗技术分类

    Table  3   Classification of hyperthermia technique

    Hyperthermia type Mode of heating Area or depth Common method
    Whole body hyperthermia Infrared radiation, radiofrequency, microwave Whole body Surface heating (Infrared radiation, immersion, microwave
    heating), cardiopulmonary bypass blood heating
    Local hyperthermia Direct heating Local body Hot mud bath, local heat wax therapy, steam wrap
    Deep hyperthermia Electromagnetic radiation Deep tissues Ultrasonic hyperthermia, radiofrequency hyperthermia
    Surface hyperthermia Direct heating Body surface Hot water bag, electrically heated pad, hot towel
    下载: 导出CSV

    表  4   三类机器人对比

    Table  4   Comparison of three types of robots

    Mechanical structure R&D institution Name Specific structural description Physical drawing [5355]
    Platform type LSCURE Moxibustion therapeutic
    robot
    Platform-type structure integrating collaborative robotic arms, a moxibustion therapy head, a vision system, a display control system, a flexible force control system, function buttons, and other modules into a unified system
    Jiangxi University of
    Chinese Medicine
    Thermo-sensitive
    moxibustion robot
    Platform-type structure consisting of a fixed platform, robotic arms, and moxibustion actuators
    Portable type Gachon Medical University, Korea Bamk-001 abdominal
    thermal massage device
    Portable structure utilizing airbags and thermoelectric modules to apply pressure and heat to the patient’s abdomen, simulating thermal therapy
    Bionic type Anhui University of Technology Shoulder and neck
    massage robot
    Bionic robotic arm with six degrees of freedom, providing flexibility for various massage actions
    Jiangnan University Bionic massage hand Modular bionic robotic hand with a four-finger symmetrical structure, capable of adjusting finger and joint positions to perform various massage techniques
    下载: 导出CSV
  • [1]

    Shi F F, Ning H S, Chen L M, et al. Cyber-syndrome: Concept, theoretical characterization, and control mechanism. Tsinghua Sci Technol, 2024, 29(3): 721 doi: 10.26599/TST.2023.9010046

    [2]

    Ning H S, Dhelim S, Bouras M A, et al. Cyber-syndrome and its formation, classification, recovery and prevention. IEEE Access, 2018, 6: 35501 doi: 10.1109/ACCESS.2018.2848286

    [3]

    Mork R, Falkenberg H K, Fostervold K I, et al. Discomfort glare and psychological stress during computer work: Subjective responses and associations between neck pain and trapezius muscle blood flow. Int Arch Occup Environ Health, 2020, 93(1): 29 doi: 10.1007/s00420-019-01457-w

    [4]

    Zheng Y M, Wei D W, Li J L, et al. Internet use and its impact on individual physical health. IEEE Access, 2016, 4: 5135 doi: 10.1109/ACCESS.2016.2602301

    [5]

    Wang W X, Zhao Z, Ning H S. A tree-based corpus annotated with Cyber-syndrome, symptoms, and acupoints. Sci Data, 2024, 11(1): 482 doi: 10.1038/s41597-024-03321-0

    [6] 李敬楠, 曾俏俏, 毕昀鹏, 等. 中医外治法治疗慢性疲劳综合征临床研究进展. 中医药信息, 2024, 41(5):82

    Li J N, Zeng Q Q, Bi Y P, et al. Clinical research progress on traditional Chinese medicine external treatment for chronic fatigue syndrome. Inf Tradit Chin Med, 2024, 41(5): 82

    [7] 唐劲天, 郭静, 阳兵, 等. 热疗的发展历程与展望. 科技导报, 2014, 32(30):15

    Tang J T, Guo J, Yang B, et al. History and prospects of hyper thermia. Sci Technol Rev, 2014, 32(30): 15

    [8]

    Lu L K, Lu T S, Tian C Y, et al. AI: Bridging ancient wisdom and modern innovation in traditional Chinese medicine. JMIR Med Inform, 2024, 12: e58491 doi: 10.2196/58491

    [9] 马欣欣, 万生芳, 魏昭晖, 等. 医疗大数据背景下的人工智能在中医诊断中的应用研究. 世界中医药, 2023, 18(11):1579 doi: 10.3969/j.issn.1673-7202.2023.11.016

    Ma X X, Wan S F, Wei Z H, et al. Application of artificial intelligence in traditional Chinese medicine diagnosis based on medical big data. World Chin Med, 2023, 18(11): 1579 doi: 10.3969/j.issn.1673-7202.2023.11.016

    [10]

    Schleer P, Drobinsky S, de la Fuente M, et al. Toward versatile cooperative surgical robotics: A review and future challenges. Int J Comput Assist Radiol Surg, 2019, 14(10): 1673 doi: 10.1007/s11548-019-01927-z

    [11] 何炳蔚, 张月, 邓震, 等. 医疗机器人与医工融合技术研究进展. 福州大学学报(自然科学版), 2021, 49(5):681

    He B W, Zhang Y, Deng Z, et al. Research progress of medical robot and medical engineering integration technology. J Fuzhou Univ (Nat Sci Ed), 2021, 49(5): 681

    [12] 刘志龙, 杜加军, 李俊桦, 等. 按摩理疗机器人应用现状及展望. 中国医疗器械信息, 2024, 30(1):83

    Liu Z L, Du J J, Li J H, et al. Application status and prospect of massage physiotherapy robots. China Med Device Inf, 2024, 30(1): 83

    [13]

    Dang L F, Shi Q. Research on Chinese traditional medical massage robotic products usability design process. J Phys: Conf Ser, 2020, 1650(2): 022014 doi: 10.1088/1742-6596/1650/2/022014

    [14] 陈润杰, 古宇成. 基于图像识别的医疗机器人设计. 现代计算机(专业版), 2018, 24(25):83

    Chen R J, Gu Y C. Design of medical robot based on image recognition. Mod Comput, 2018, 24(25): 83

    [15] 杜佳, 张佳乐, 郑凡, 等. 眼部艾灸应用的研究进展//新时代 新思维 新跨越 新发展—2019中国针灸学会年会暨40周年回顾论文集. 武汉, 2019:5

    Du J, Zhang J L, Zheng F, et al. Application research progress in moxibustion of eye // New Era, New Thinking, New Leap and New Development — 2019 Annual Meeting of the Chinese Acupuncture and Moxibustion Society and its 40th Anniversary Review Proceedings. Wuhan, 2019: 5

    [16] 魏孟奇, 董林. 中医外治法治疗肩周炎的研究进展. 中国医学创新, 2024, 21(4):162 doi: 10.3969/j.issn.1674-4985.2024.04.037

    Wei M Q, Dong L. Research progress on external therapy of traditional Chinese medicine in the treatment of periarthritis humeroscapularis. Med Innov China, 2024, 21(4): 162 doi: 10.3969/j.issn.1674-4985.2024.04.037

    [17] 程相甫, 左韬. 雷火灸治疗短泪膜破裂时间性干眼90例临床观察. 亚太传统医药, 2021, 17(4):88

    Cheng X F, Zuo T. Clinical observation of thunder fire moxibustion in the treatment of 90 cases of dry eye with short tear film rupture time. Asia-Pacific Traditional Medicine, 2021, 17(4): 88

    [18]

    Liu H, Yao X X, Yang T, et al. Cooperative privacy preservation for wearable devices in hybrid computing-based smart health. IEEE Internet Things J, 2019, 6(2): 1352 doi: 10.1109/JIOT.2018.2843561

    [19]

    Shi F F, Ning H S, Dhelim S. A tutorial of cyber-syndrome viewed from cyber-physical-social-thinking space and maslow’s hierarchy of needs [J/OL]. arXiv preprint (2021−11−04) [2024−07−29]. https://arxiv.org/abs/2111.02775

    [20]

    Pavel I A, Bogdanici C M, Donica V C, et al. Computer vision syndrome: An ophthalmic pathology of the modern era. Medicina, 2023, 59(2): 412 doi: 10.3390/medicina59020412

    [21]

    Anbesu E W, Lema A K. Prevalence of computer vision syndrome: A systematic review and meta-analysis. Sci Rep, 2023, 13(31): 1801

    [22]

    Watanabe T, Xia C S, Fujita K, et al. Screening for carpal tunnel syndrome using daily behavior on mobile devices. Computer, 2023, 56(9): 62

    [23]

    Osiak K, Elnazir P, Walocha J A, et al. Carpal tunnel syndrome: State-of-the-art review. Folia Morphol, 2022, 81(4): 851 doi: 10.5603/FM.a2021.0121

    [24]

    Song D, Park D, Kim E, et al. Neck muscle fatigue due to sustained neck flexion during smartphone use. Int J Ind Ergon, 2024, 100: 103554 doi: 10.1016/j.ergon.2024.103554

    [25] 马进, 胡文东, 文治洪, 等. 计算机视觉综合征的发展和现状. 临床眼科杂志, 2010, 18(3):273

    Ma J, Hu W D, Wen Z H, et al. Development and current status of computer vision syndrome. J Clin Ophthalmol, 2010, 18(3): 273

    [26] 张晓黎, 郑永强, 屈勇, 等. 行为、物理疗法联合药物对腕管综合征的疗效分析. 临床神经病学杂志, 2021, 34(4):273

    Zhang X L, Zheng Y Q, Qu Y, et al. Analysis of therapeutic effect for carpal tunnel syndrome treated with a combination of behavior therapy, physical therapy and pharmacotherapy. J Clin Neurol, 2021, 34(4): 273

    [27] 王庆鑫. 温针灸结合中医定向透药治疗风寒湿型冈上肌腱炎的临床疗效观察[学位论文]. 哈尔滨:黑龙江中医药大学, 2023

    Wang Q X. Observation on Clinical Curative Effect of Warming Needling Moxibustion Combined with Directional Penetration Medicine of Traditional Chinese Medicine in Treating Wind-cold-damp Type Supraspinatus Tendonitis [Dissertation]. Harbin: Heilongjiang University of Chinese Medicine, 2023

    [28] 毛廧东子, 程立红. 针刺结合热敏灸治疗电脑腰背综合征48例. 江西中医药, 2014, 45(6):61

    Mao Q D Z, Cheng L H. Acupuncture combined with heat-sensitive moxibustion in the treatment of computerized low back syndrome in 48 cases. Jiangxi J Tradit Chin Med, 2014, 45(6): 61

    [29] 游雅琪, 鲁海. 针灸对于常见眼部疾病的治疗. 中国眼镜科技杂志, 2020(12):111 doi: 10.3969/j.issn.1004-6615.2020.12.033

    You Y Q, Lu H. Acupuncture for common eye diseases. China Glasses Sci Technol Mag, 2020(12): 111 doi: 10.3969/j.issn.1004-6615.2020.12.033

    [30] 马文龙, 程春生, 查朱青, 等. 程春生运用筋病理论治疗指屈肌腱狭窄性腱鞘炎(筋痹)经验. 中国民间疗法, 2023, 31(10):13

    Ma W L, Cheng C S, Zha Z Q, et al. Experience of Chunsheng Cheng in treating stenosing tenosynovitis of finger flexor tendons (tendon paralysis) by applying the theory of tendon diseases. China’s Naturopathy, 2023, 31(10): 13

    [31] 何鑫淼. 中西医结合保守治疗方法在颈椎病中的应用及进展. 中外医学研究, 2023, 21(8):162

    He X M. Application and progress of conservative treatment methods of integrated traditional Chinese and western medicine in cervical spondylosis. Chin Foreign Med Res, 2023, 21(8): 162

    [32] 萧文科, 郑世超, 甘彦雄, 等. 基于石墨烯远红外加热的可穿戴艾叶暖宫贴设计与开发. 世界科学技术—中医药现代化, 2021, 23(10):3496

    Xiao W K, Zheng S C, Gan Y X, et al. Design and development of wearable artemisiae argyi folium uterus sticker based on graphene far infrared heating. World Sci Technol—Mod Tradit Chin Med Mater Med, 2021, 23(10): 3496

    [33] 张雪涛, 王含笑, 王震, 等. 自动除灰热敏灸装置的研制与特点. 中国针灸, 2023, 43(5):597

    Zhang X T, Wang H X, Wang Z, et al. Development and characteristics of automatic ash-removal heat-sensitive moxibustion device. Chin Acupunct Moxibustion, 2023, 43(5): 597

    [34] 徐成淼. 灸疗推拿一体化中医理疗仪的研制[学位论文]. 南京:南京航空航天大学, 2021

    Xu C M. Research of an Integrated TCM Therapy Instrument for Moxibustion Therapy and Massage Therapy [Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021

    [35] 况荣欣. 基于深度学习的人体背部穴位的识别与定位[学位论文]. 南昌:南昌大学, 2022

    Kuang R X. Identification and Localization of Human Backed Acupoints Based on Deep Learning [Dissertation]. Nanchang: Nanchang University, 2022

    [36] 李树佳. 中医热敏灸机器人的视觉建模及轨迹自动规划[学位论文]. 广州:广东工业大学, 2021

    Li S J. Vision Modeling and Automatic Trajectory Planning of TCM Moxibustion Robot [Dissertation]. Guangzhou: Guangdong University of Technology, 2021

    [37] 钟义. 智能艾灸机器人研制[学位论文]. 南京:东南大学, 2021

    Zhong Y. Development of Intelligent Moxibustion Robot [Dissertation]. Nanjing: Southeast University, 2021

    [38]

    Yang J, Lim K H, Mohabbat A B, et al. Robotics in massage: A systematic review. Health Serv Res Manag Epidemiol, 2024, 11: 23333928241230948

    [39] 徐碧阳. 基于穴位自主定位的青年群体腰部按摩产品设计研究[学位论文]. 西安:西安理工大学, 2023

    Xu B Y. Research on The Design of Waist Massage Products for Young People Based on Acupoing Autonomous Positioning [Dissertation]. Xi’an: Xi’an University of Technology, 2023

    [40] 高京荣. 艾灸劳宫穴治疗鼠标手. 临床医药文献电子杂志, 2019, 6(52):18

    Gao J R. Acupuncture and moxibustion at Laogong acupoint for mouse hand. Electron J Clin Med Lit, 2019, 6(52): 18

    [41] 查庆林. 中医按摩机器人关键技术研究[学位论文]. 上海:上海应用技术大学, 2023

    Zha Q L. Research on Key Technologies of TCM Massage Robot [Dissertation]. Shanghai: Shanghai Institute of Technology, 2023

    [42]

    Feng C W, Zhou S Y, Qu Y Y, et al. Overview of artificial intelligence applications in Chinese medicine therapy. Evid Based Complementary Altern Med, 2021, 2021(1): 6678958

    [43] 陈白玲. 热疗(深部温热仪INDIBA)配合手法拉伸用于缓解颈部活动受限的研究[学位论文]. 北京:首都体育学院, 2015

    Chen B L. The Research of Alleviate Limited Mobility of Neck by Manual Stretching Combined with Thermotherapy (Deep Hyperthermia Instrument INDIBA) [Dissertation]. Beijing: Capital University of Physical Education and Sports, 2015

    [44] 雷金华, 王仁生. 全身热疗的研究进展. 医学综述, 2009, 15(4):582 doi: 10.3969/j.issn.1006-2084.2009.04.034

    Lei J H, Wang R S. Research progress of whole body hyperthermia. Med Recapitul, 2009, 15(4): 582 doi: 10.3969/j.issn.1006-2084.2009.04.034

    [45] 黄海. 推拿手法结合热疗治疗椎间盘源性下腰痛的临床疗效观察[学位论文]. 武汉:湖北中医药大学, 2013

    Huang H. The Clinical Observation of Dicogenic Low Back Pain Treated by the Massage Combined with Thermotherapy [Dissertation]. Wuhan: Hubei University of Chinese Medicine, 2013

    [46] 李金龙, 曹喜信, 王浩然, 等. 提升移动机器人激光导航精度的技术研究与实现. 微纳电子与智能制造, 2020, 2(3):4

    Li J L, Cao X X, Wang H R, et al. Technical research and implementation of improving the laser navigation precision of mobile robots. Micro/nano Electron Intell Manuf, 2020, 2(3): 4

    [47] 张文前. 智能移动机器人技术现状及展望. 电子技术与软件工程, 2016(8):130

    Zhang W Q. Intelligent mobile robot technology status and prospects. Electron Technol Softw Eng, 2016(8): 130

    [48] 李磊, 叶涛, 谭民, 等. 移动机器人技术研究现状与未来. 机器人, 2002, 24(5):475 doi: 10.3321/j.issn:1002-0446.2002.05.020

    Li L, Ye T, Tan M, et al. Present state and future development of mobile robot technology research. Robot, 2002, 24(5): 475 doi: 10.3321/j.issn:1002-0446.2002.05.020

    [49] 张秋云, 张营, 李臣. 遗传算法优化BP神经网络在中医按摩机器人中的应用. 应用科技, 2017, 44(2):73 doi: 10.11991/yykj.201603018

    Zhang Q Y, Zhang Y, Li C. Application of BP neural network based on genetic algorithm optimization in Chinese medicine massage robot. Appl Sci Technol, 2017, 44(2): 73 doi: 10.11991/yykj.201603018

    [50] 孙晨飞, 唐心意, 石萍, 等. 国内外按摩机器人研究进展及关键技术分析. 生物医学工程研究, 2024, 43(2):166

    Sun C F, Tang X Y, Shi P, et al. Research progress and key technology analysis of massage robot at home and abroad. J Biomed Eng Res, 2024, 43(2): 166

    [51]

    Minyong P, Mouri K, Kitagawa H, et al. Hybrid impedance and force control for massage system by using humanoid multi-fingered robot hand // 2007 IEEE International Conference on Systems, Man and Cybernetics. Montrea, 2007: 3021

    [52]

    Zhou Z, Wang Y X, Zhang C J, et al. Design and massaging force analysis of wearable flexible single point massager imitating traditional Chinese medicine. Micromachines, 2022, 13(3): 370 doi: 10.3390/mi13030370

    [53] 赵维超. 按摩机械手机构的设计与研究[学位论文]. 马鞍山:安徽工业大学, 2018

    Zhao W C. The Design and Research of the Mechanism of the Massage Manipulator [Dissertation]. Maanshan: Anhui University of Technology, 2018

    [54] 余可, 宁萌, 黄彪, 等. 基于中医推拿的新型按摩手的设计与研究. 机械设计与研究, 2021, 37(3):22

    Yu K, Ning M, Huang B, et al. Design and research of a new type of massage hand based on Chinese massage. Mach Des Res, 2021, 37(3): 22

    [55]

    Choi Y I, Kim K O, Chung J W, et al. Effects of automatic abdominal massage device in treatment of chronic constipation patients: A prospective study. Dig Dis Sci, 2021, 66(9): 3105 doi: 10.1007/s10620-020-06626-3

    [56] 兰沣卜, 赵文博, 朱凯, 等. 基于具身智能的移动操作机器人系统发展研究. 中国工程科学, 2024, 26(1):139 doi: 10.15302/J-SSCAE-2024.01.010

    Lan F B, Zhao W B, Zhu K, et al. Development of mobile manipulator robot system with embodied intelligence. Strateg Study CAE, 2024, 26(1): 139 doi: 10.15302/J-SSCAE-2024.01.010

    [57] 徐炜君, 刘凤辉, 陶东华. 一种智能艾灸设备的研制与应用. 上海中医药杂志, 2017, 51(5):17

    Xu W J, Liu F H, Tao D H. Development and application of an intelligent moxibustion equipment. Shanghai J Tradit Chin Med, 2017, 51(5): 17

    [58] 白善明, 崔娟, 张志东, 等. 基于六自由度机械臂的艾灸机器人手法控制算法. 科学技术与工程, 2023, 23(6):2403 doi: 10.12404/j.issn.1671-1815.2023.23.06.02403

    Bai S M, Cui J, Zhang Z D, et al. Manipulative control algorithm of moxibustion robot based on 6-DOF manipulator. Sci Technol Eng, 2023, 23(6): 2403 doi: 10.12404/j.issn.1671-1815.2023.23.06.02403

    [59] 鲁守银, 李臣. 中医按摩机器人关键技术研究进展. 山东建筑大学学报, 2017, 32(1):60 doi: 10.3969/j.issn.1673-7644.2017.01.010

    Lu S Y, Li C. Research progvess of key technology of Chinese medical massage robot. J Shandong Jianzhu Univ, 2017, 32(1): 60 doi: 10.3969/j.issn.1673-7644.2017.01.010

    [60]

    Dani A, Kan Z, Kamalapurkar R, et al. Editorial: Safety in collaborative robotics and autonomous systems. Front Robot AI, 2022, 9: 949214 doi: 10.3389/frobt.2022.949214

    [61]

    Sadeghi Z, Alizadehsani R, Cifci M A, et al. A review of explainable artificial intelligence in healthcare. Comput Electr Eng, 2024, 118: 109370 doi: 10.1016/j.compeleceng.2024.109370

    [62]

    Wani N A, Kumar R, Mamta, et al. Explainable AI-driven IoMT fusion: Unravelling techniques, opportunities, and challenges with explainable AI in healthcare. Inf Fusion, 2024, 110: 102472 doi: 10.1016/j.inffus.2024.102472

图(5)  /  表(4)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  8
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-29
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回