“智能健康与医疗”专辑+ DiaRAG:面向糖尿病领域的智能问答系统

DiaRAG: Intelligent Question-Answering System for the Diabetes Domain

  • 摘要: 为了满足糖尿病领域对智能问答系统高效性与专业性的双重需求,本文设计并实现了融合知识图谱与检索增强生成(RAG,Retrieval Augmented Generation)的糖尿病领域智能问答系统——DiaRAG。该系统提出了一种自动提示生成方法(APG,Auto Prompt Generation),能够自动生成适用于糖尿病领域的提示模板,用于提取糖尿病知识图谱并构建检索知识库。同时,通过提示学习对病患提出的问句进行校正,有效解决了复杂问句中的语义和语法偏误问题。此外,本文设计了微调排序模型(Fine-tuned Reranker),对糖尿病知识图谱的社区摘要进行二次过滤,以确保检索结果与病患提问意图的高度契合。DiaRAG系统通过深度融合知识图谱与大语言模型(LLM,Large Language Model),充分利用外部知识库,从而显著提升了糖尿病领域知识的问答能力。实验结果表明,DiaRAG在问答准确性、社区摘要相关性等方面均显著优于现有系统,为糖尿病个性化知识服务提供了创新性解决方案。

     

    Abstract: To meet the demand for efficiency and professionalism in intelligent question-answering systems for the diabetes domain, this paper designs and implements DiaRAG, an intelligent question-answering system that integrates knowledge graphs and retrieval-augmented generation (RAG). The system proposes an Auto Prompt Generation (APG) method, which can automatically generate diabetes-specific prompt templates to extract the diabetes knowledge graph and construct a retrieval knowledge base. Additionally, this paper designs a fine-tuned reranker model to perform secondary filtering of community summaries from the diabetes knowledge graph, ensuring a high alignment between retrieval results and the patient’s inquiry intent. By deeply integrating knowledge graph with large language models (LLMs), the DiaRAG makes full use of external knowledge bases, significantly enhancing the question-answering capabilities in the diabetes domain. Experimental results demonstrate that DiaRAG outperforms existing systems in terms of answer accuracy, community summary relevance, and user experience, offering an innovative solution for personalized knowledge services in diabetes care.

     

/

返回文章
返回