刚性基层沥青路面压-剪行为与模量过渡研究

* 黄优,E-mail: hyzju@csust.edu.cn

  • 摘要: 基层刚度影响着沥青路面结构的受力状态及破坏模式,为了深入研究刚性基层上沥青路面的力学行为特征,改善刚柔复合式路面的结构力学性能,推导了沥青混合料的黏弹塑性本构,建立了刚柔复合式路面热-力耦合模型,提取了沥青层内部的温度-模量场,开展了热力耦合作用下刚柔复合式路面力学行为分析,提出了刚柔复合式路面模量梯度结构。结果表明:沥青层内部在环境温度下存在明显温度梯度,导致沥青层内部产生随时空变化的模量梯度;明确了热力耦合作用下复合式路面沥青层压-剪力学行为,设计时应重点考虑刚性基层上沥青面层的剪应力;当基层模量与面层模量接近以及沥青面层模量沿深度梯度增加时,沥青层剪应力较小,因此有必要在复合式路面设置模量过渡层,以协调面层与基层之间的模量差异,降低沥青面层的剪应力;最后基于响应曲面模型,以复合式路面沥青层最大剪应力最小为优化目标,得到复合式路面模量过渡结构为:沥青上面层厚度4cm,过渡层厚度8cm,过渡层模量为沥青层模量的2倍,上面层剪应力与过渡层剪应力较不设过渡层的复合式路面对应层位分别降低了14.3%和20.5%。研究成果可为刚性基层沥青路面的结构力学行为及材料研发提供参考。

     

    Abstract: The stiffness of the base layer significantly influences the mechanical state and failure modes of asphalt pavement structures. To investigate the mechanical behavior of asphalt pavements on rigid bases and improve the structural performance of rigid-flexible composite pavements, this study derived a viscoelastic-plastic constitutive model for asphalt mixtures, established a thermo-mechanical coupling model for composite pavements, extracted the temperature-modulus fields within the asphalt layer, and analyzed the mechanical response under coupled thermal-mechanical loading. A modulus gradient structure for composite pavements was proposed. The results indicate that significant temperature gradients exist within the asphalt layer under environmental thermal conditions, leading to spatiotemporal modulus gradients. The compressive-shear mechanical behavior of the asphalt layer in composite pavements under thermo-mechanical coupling was clarified, emphasizing the critical role of shear stress in asphalt layers over rigid bases during design. When the base layer modulus approaches the surface layer modulus and the asphalt layer modulus increases gradiently with depth, the shear stress in the asphalt layer decreases. Therefore, introducing a modulus transition layer between the asphalt surface and rigid base is essential to mitigate modulus mismatch and reduce shear stress. Based on the response surface model (RSM) with the minimization of maximum shear stress as the optimization target, the optimal modulus transition structure was determined: a 4 cm upper asphalt layer, an 8 cm transition layer with a modulus twice that of the asphalt layer. This configuration reduced the shear stress in the upper layer and transition layer by ??14.3%?? and ??20.5%??, respectively, compared to a structure without a transition layer. The findings provide theoretical support for the structural design and material development of rigid-base asphalt pavements.

     

/

返回文章
返回