赵海军, 俞宏英, 曹瑜琦, 孙冬柏, 孟惠民. 非晶态Ni-P合金粉体的脉冲放电制备及其催化性能[J]. 工程科学学报, 2010, 32(8): 1011-1016. DOI: 10.13374/j.issn1001-053x.2010.08.042
引用本文: 赵海军, 俞宏英, 曹瑜琦, 孙冬柏, 孟惠民. 非晶态Ni-P合金粉体的脉冲放电制备及其催化性能[J]. 工程科学学报, 2010, 32(8): 1011-1016. DOI: 10.13374/j.issn1001-053x.2010.08.042
ZHAO Hai-jun, YU Hong-ying, CAO Yu-qi, SUN Dong-bo, MENG Hui-min. Synthesis of amorphous Ni-P alloy particles by pulse discharge and their catalytic performance[J]. Chinese Journal of Engineering, 2010, 32(8): 1011-1016. DOI: 10.13374/j.issn1001-053x.2010.08.042
Citation: ZHAO Hai-jun, YU Hong-ying, CAO Yu-qi, SUN Dong-bo, MENG Hui-min. Synthesis of amorphous Ni-P alloy particles by pulse discharge and their catalytic performance[J]. Chinese Journal of Engineering, 2010, 32(8): 1011-1016. DOI: 10.13374/j.issn1001-053x.2010.08.042

非晶态Ni-P合金粉体的脉冲放电制备及其催化性能

Synthesis of amorphous Ni-P alloy particles by pulse discharge and their catalytic performance

  • 摘要: 采用脉冲放电技术合成Ni-P合金粉体,研究了合金粉体的结构及其对高氯酸铵热分解的影响.结果表明,非晶态Ni-P合金粉体是由微粒组成的团聚结构.脉冲放电电压700、900和1100V对应的弦粒子数依次增大,粉体粒径依次减小,分别为350~500、250~400和150~300nm.Ni-P合金粉体促进高氯酸铵的低温和高温热分解,与纯高氯酸铵相比,高氯酸铵和Ni-P粉体混合物的第1放热峰(低温分解峰)温度降低幅度小于12℃,第2放热峰(高温分解峰)温度降低约53℃;合金粉体粒径减小,第1放热峰强度增强,第2放热峰强度减弱,低温分解失重从高氯酸铵的15.97%增加到42.78%,高温分解失重从81.62%降低到47.58%,高温分解结束时温度的降低幅度为26~43℃.

     

    Abstract: Ni-P alloy particles were synthesized by pulse discharge, and then their microstructure and effect on the thermal decomposition of ammonium perchlorate (AP) were studied. The results show that amorphous Ni-P alloy particles are composed of aggregates. The chord counts increase with increasing discharge voltage, leading to the reduction in diameter of Ni-P particles. The sizes of particles prepared at discharge voltages of 700, 900 and 1 100 V are 350 to 500, 250 to 400 and 150 to 300 nm, respectively. Ni-P alloy particles are beneficial to the thermal decomposition of AP at both low and high temperatures. In comparison with pure AP, Ni-P particles result in a decrease of the first (low temperature decomposition) and second exothermic (high temperature decomposition) peak temperature, and the decrease ranges are within 12℃ and about 53℃, respectively. The first exothermic peak is intensified with a reduction in size of Ni-P particles, but the second exothermic peak becomes weakened. In addition, the mass loss of low-temperature decomposition increases from 15.97% for pure AP to 42.78% for the mixture of AP and Ni-P particles, while the mass loss of high-temperature decomposition decreases from 81.62% to 47.58% and the end of high temperature decomposition is reduced by a range of 26 to 43℃.

     

/

返回文章
返回