赵海军, 俞宏英, 曹瑜琦, 孟惠民, 孙冬柏. 脉冲放电制备链枝状非晶态Ni-P合金粉体的晶化行为[J]. 工程科学学报, 2010, 32(9): 1198-1202. DOI: 10.13374/j.issn1001-053x.2010.09.013
引用本文: 赵海军, 俞宏英, 曹瑜琦, 孟惠民, 孙冬柏. 脉冲放电制备链枝状非晶态Ni-P合金粉体的晶化行为[J]. 工程科学学报, 2010, 32(9): 1198-1202. DOI: 10.13374/j.issn1001-053x.2010.09.013
ZHAO Hai-jun, YU Hong-ying, CAO Yu-qi, MENG Hui-min, SUN Dong-bo. Crystallization behavior of amorphous Ni-P chain dendritic alloy particles prepared by pulse discharge[J]. Chinese Journal of Engineering, 2010, 32(9): 1198-1202. DOI: 10.13374/j.issn1001-053x.2010.09.013
Citation: ZHAO Hai-jun, YU Hong-ying, CAO Yu-qi, MENG Hui-min, SUN Dong-bo. Crystallization behavior of amorphous Ni-P chain dendritic alloy particles prepared by pulse discharge[J]. Chinese Journal of Engineering, 2010, 32(9): 1198-1202. DOI: 10.13374/j.issn1001-053x.2010.09.013

脉冲放电制备链枝状非晶态Ni-P合金粉体的晶化行为

Crystallization behavior of amorphous Ni-P chain dendritic alloy particles prepared by pulse discharge

  • 摘要: 在镍盐溶液中利用脉冲放电技术制备出Ni-P合金粉体,并用场发射扫描电镜(FESEM)、透射电镜(TEM)、X射线衍射(XRD)及差热分析(DTA)等手段研究非晶粉体的晶化行为和组织结构特征.结果表明:Ni-P合金粉体形貌为链枝状,径向可达500nm左右,长度可达数微米.制备的合金粉体为非晶态结构,在280℃以下热处理时没有改变非晶态结构:在300℃开始晶化,析出亚稳相Ni5P2和Ni12P5;在320℃开始析出稳定相Ni和Ni3P;温度升高到400℃时,亚稳相消失.采用Kissinger公式计算出该合金粉体的晶化激活能为291.76kJ·mol-1.

     

    Abstract: Ni-P alloy particles were synthesized by means of pulse discharge in nickel salt solution.The microstructure characterization and crystallization behavior of the particles were investigated using field emission scanning electron microscopy (FESEM),transmission electron microscopy (TEM),X-ray diffraction analysis (XRD) and differential thermal analysis (DTA).The results show that the particles exhibit the morphology of a dendrite-like and chain-like combination,with the diameter of up to about 500 nm and the length of several microns.Their structure is amorphous and maintains at temperatures lower than 280 ℃,but begins to crystallize into metastable phases Ni5P2 and Ni12P5 at 300 ℃.Ni and Ni3P stable phases appear at 320 ℃,and the metastable phases disappear above 400 ℃.The crystallization activation energy is 291.76 kJ·mol-1 determined by the Kissinger equation.

     

/

返回文章
返回