程俊业, 赵爱民, 陈银莉, 汪志刚, 曹佳丽. 回火温度对淬火后30MnB5热成形钢组织与性能影响[J]. 工程科学学报, 2013, 35(9): 1150-1157. DOI: 10.13374/j.issn1001-053x.2013.09.007
引用本文: 程俊业, 赵爱民, 陈银莉, 汪志刚, 曹佳丽. 回火温度对淬火后30MnB5热成形钢组织与性能影响[J]. 工程科学学报, 2013, 35(9): 1150-1157. DOI: 10.13374/j.issn1001-053x.2013.09.007
CHENG Jun-ye, ZHAO Ai-min, CHEN Yin-li, WANG Zhi-gang, CAO Jia-li. Effect of tempering temperature on the microstructure and mechanical properties of 30MnB5 hot stamping steel after quenching[J]. Chinese Journal of Engineering, 2013, 35(9): 1150-1157. DOI: 10.13374/j.issn1001-053x.2013.09.007
Citation: CHENG Jun-ye, ZHAO Ai-min, CHEN Yin-li, WANG Zhi-gang, CAO Jia-li. Effect of tempering temperature on the microstructure and mechanical properties of 30MnB5 hot stamping steel after quenching[J]. Chinese Journal of Engineering, 2013, 35(9): 1150-1157. DOI: 10.13374/j.issn1001-053x.2013.09.007

回火温度对淬火后30MnB5热成形钢组织与性能影响

Effect of tempering temperature on the microstructure and mechanical properties of 30MnB5 hot stamping steel after quenching

  • 摘要: 将30MnB5热成形钢进行淬火和回火处理,利用扫描电镜、透射电镜、能谱仪和拉伸性能检测等方法研究了不同回火温度后的显微组织和力学性能变化.经200℃保温2 min回火后热成形钢的综合力学性能最佳,抗拉强度为1774 MPa,总伸长率为8%,强塑积达14 GPa·%以上,该性能满足热成形后作为汽车结构件的使用要求;并且随着回火温度的升高,力学性能呈非单调性变化.200℃低温回火后,主要为板条马氏体和ε碳化物,位错密度略有降低,析出的ε碳化物粒子呈针状分布在马氏体板条内,长度方向大小为100 nm左右,并与位错发生钉扎作用.随着回火温度的升高,板条马氏体发生回复和再结晶,板条边界逐渐模糊,并向等轴状铁素体转变,位错密度显著降低,ε碳化物逐渐向低能态的近球形渗碳体转变并粗化至200 nm左右,对位错的钉扎作用也随之减弱.

     

    Abstract: 30MnB5 hot stamping steel was quenched and tempered at different temperatures. The effects of tem-pering temperature on the microstructure and mechanical properties were investigated by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, and tensile testing. The best mechanical properties were obtained after the steel being tempered at 200℃ for 2 min, which are the tensile strength of 1774 MPa, the total elongation of 8%, and the product of tensile strength and elongation more than 14 GPa.%. It can meet the require-ment for automotive structural parts after hot stamping. The mechanical properties non-monotonically change with tempering temperature. The microstructure of the steel tempered at 200℃ is lath martensite and ε-carbides, and the dislocation density decreases slightly. The ε-carbide particles with the size of about 100 nm in length are needle-like distributed in martensite laths and pinned with dislocations. When the tempering temperature increases, the recovery and recrystallization of lath martensite occur, the lath boundary becomes more and more obscure, and the dislocation density decreases sharply. Furthermore, some of the lath martensite transforms into equiaxed ferrite, and the ε-carbides gradually convert into low-boundary-layer-energy spheroidal cementite, which is coarsened to about 200 nm. Owing to these, the interaction between carbides and dislocations largely weakens.

     

/

返回文章
返回