王文浩, 尹海清, 曲选辉, Dil Faraz Khan. 纳米铜粉对高速压制铁基粉末冶金零件性能的影响[J]. 工程科学学报, 2013, 35(10): 1340-1345. DOI: 10.13374/j.issn1001-053x.2013.10.015
引用本文: 王文浩, 尹海清, 曲选辉, Dil Faraz Khan. 纳米铜粉对高速压制铁基粉末冶金零件性能的影响[J]. 工程科学学报, 2013, 35(10): 1340-1345. DOI: 10.13374/j.issn1001-053x.2013.10.015
WANG Wen-hao, YIN Hai-qing, QU Xuan-hui, DilFaraz Khan. Effect of copper nanoparticles on strengthening of iron base P/M parts formed by high velocity compaction[J]. Chinese Journal of Engineering, 2013, 35(10): 1340-1345. DOI: 10.13374/j.issn1001-053x.2013.10.015
Citation: WANG Wen-hao, YIN Hai-qing, QU Xuan-hui, DilFaraz Khan. Effect of copper nanoparticles on strengthening of iron base P/M parts formed by high velocity compaction[J]. Chinese Journal of Engineering, 2013, 35(10): 1340-1345. DOI: 10.13374/j.issn1001-053x.2013.10.015

纳米铜粉对高速压制铁基粉末冶金零件性能的影响

Effect of copper nanoparticles on strengthening of iron base P/M parts formed by high velocity compaction

  • 摘要: 研究了用高速压制技术制备的纳米铜粉增强铁基合金制品的性能.在保持原料中铜粉总质量分数1.5%不变的情况下,将部分或全部微米级铜粉替换成纳米级铜粉,并通过高速压制技术制备了七种纳米铜粉质量分数分别为0、0.25%、0.50%、0.75%、1.00%、1.25%和1.50%的铁基合金制品试样,随后压坯于1150℃下烧结2h.研究发现铁基合金烧结制品的组织和性能得到改善,且尺寸精度得到有效控制.当纳米铜质量分数为0.75%时,烧结态合金的抗拉强度和硬度分别达到720.6MPa和94.7HRB.纳米铜质量分数为0.25%-1.5%时,所得试样的轴向和径向收缩率分别在0.4%-0.7%和-0.09%~-0.23%之间.

     

    Abstract: Cu nanopowders were used to improve the performance of iron based alloy products formed by high velocity compaction. Under the condition that Cu powders were remain unchanged as a constant of 1.5%, part or all of Cu micropowders were replaced by Cu nanopowders. Seven kinds of iron-based alloy product samples in which the mass fractions of Cu nanopowders were 0-0.25%, 0.50%-0.75%, 1.00%, 1.25% and 1.50% respectively were prepared by high velocity compaction. The green compacts were sintered at 1150℃ for 2 h subsequently. It is found that the microstructure and performance of the iron base P/M parts is improved and the dimensional accuracy is also effectively controlled with the addition of Cu nanopowders. The tensile strength and hardness of the sintered alloy which contains 0.75% of Cu nanopowders are 720.6 MPa and 94.7 HRB, respectively. The axial and radial shrinkages of the obtained samples are in the ranges of 0.4% to 0.7% and -0.09% to -0.23% respectively when the mass fraction of Cu nanopowders is from 0.25% to 1.50%.

     

/

返回文章
返回