张勇, 陈腾飞, 张建, 黄淑荣, 高海丽, 王力臻, 宋延华, 张林森, 李晓峰. 石墨烯的制备及其超级电容性能[J]. 工程科学学报, 2014, 36(7): 931-937. DOI: 10.13374/j.issn1001-053x.2014.07.012
引用本文: 张勇, 陈腾飞, 张建, 黄淑荣, 高海丽, 王力臻, 宋延华, 张林森, 李晓峰. 石墨烯的制备及其超级电容性能[J]. 工程科学学报, 2014, 36(7): 931-937. DOI: 10.13374/j.issn1001-053x.2014.07.012
ZHANG Yong, CHEN Teng-fei, ZHANG Jian, HUANG Shu-rong, GAO Hai-li, WANG Li-zhen, SONG Yan-hua, ZHANG Lin-sen, LI Xiao-feng. Preparation and supercapacitive performance of high-quality graphene material[J]. Chinese Journal of Engineering, 2014, 36(7): 931-937. DOI: 10.13374/j.issn1001-053x.2014.07.012
Citation: ZHANG Yong, CHEN Teng-fei, ZHANG Jian, HUANG Shu-rong, GAO Hai-li, WANG Li-zhen, SONG Yan-hua, ZHANG Lin-sen, LI Xiao-feng. Preparation and supercapacitive performance of high-quality graphene material[J]. Chinese Journal of Engineering, 2014, 36(7): 931-937. DOI: 10.13374/j.issn1001-053x.2014.07.012

石墨烯的制备及其超级电容性能

Preparation and supercapacitive performance of high-quality graphene material

  • 摘要: 以鳞片石墨为原料,采用化学氧化还原法制备了高品质的石墨烯.借助X射线衍射分析、扫描电子显微镜和透射电子显微镜观察、氮气吸附-脱附实验、恒流充放电实验、循环伏安法和交流阻抗谱技术对石墨烯的结构、形貌、表面性能和超级电容性能进行了系统研究.X射线衍射、扫描电镜和透射电镜结果表明,石墨烯整体上呈现无序结构,外观具有蓬松、透明的薄纱状及本征性皱褶,其BET比表面积为14.2m2·g-1,总孔容为0.06cm3·g-1,平均孔径为17.3nm.交流阻抗谱测试结果表明,石墨烯电极具有较小的阻抗,其等效串联电阻为0.16 Ω,电荷传递电阻为0.55 Ω.恒流充放电和循环伏安测试结果显示:石墨烯电极具有良好的功率特性和循环稳定性,电容特征显著.在2、5、10和20mV·s-1扫描速度下的放电比电容分别为123、113、101和89 F·g-1;即使是50mV·s-1的高扫速,放电比电容仍可达69F·g-1.

     

    Abstract: High quality graphene material was prepared from flake graphite by chemical oxidation-reduction process. Its microstructure, morphology, surface properties and supercapacitive performance were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brumauer-Emmett-Teller (BET) analysis, galvanostatic charge/discharge test, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). XRD results show that the crystal structure of the graphene is amorphous. SEM and TEM images show that the graphene plays flake-like shapes with wrinkles and ripples. Moreover, the graphene has porous structure with a BET specific surface area of 14.2 m2·g-1, total pore volume of 0.06 cm3·g-1, and average pore diameter of 17.3 nm. EIS results show that the graphene electrode has a smaller impedance, the equivalent series resistance is 0.16 Ω, and the charge transfer resistance is 0.55 Ω. Galvanostatic charge/discharge test and CV analysis indicate that the graphene exhibits enhanced capacitance, high current charge/discharge characteristics, and stable cycle life as a supercapacitor electrode. It delivers the discharge specific capacities of 123, 113, 101 and 89 F·g-1 at the scan rates of 2, 5, 10, and 20 mV·s-1, respectively. Even though the scan rate is 50 mV·s-1, the discharge specific capacity retains 69 F·g-1.

     

/

返回文章
返回