张明博, 仇圣桃, 李建新, 朱荣, 刘宏强, 黄世平. 冷却方式对低钛高炉渣矿物组成和矿相结构的影响[J]. 工程科学学报, 2016, 38(5): 658-667. DOI: 10.13374/j.issn2095-9389.2016.05.010
引用本文: 张明博, 仇圣桃, 李建新, 朱荣, 刘宏强, 黄世平. 冷却方式对低钛高炉渣矿物组成和矿相结构的影响[J]. 工程科学学报, 2016, 38(5): 658-667. DOI: 10.13374/j.issn2095-9389.2016.05.010
ZHANG Ming-bo, CHOU Sheng-tao, LI Jian-xin, ZHU Rong, LIU Hong-qiang, HUANG Shi-ping. Effect of cooling methods on the mineralogical composition and microstructure of low titanium-containing blast furnace slag[J]. Chinese Journal of Engineering, 2016, 38(5): 658-667. DOI: 10.13374/j.issn2095-9389.2016.05.010
Citation: ZHANG Ming-bo, CHOU Sheng-tao, LI Jian-xin, ZHU Rong, LIU Hong-qiang, HUANG Shi-ping. Effect of cooling methods on the mineralogical composition and microstructure of low titanium-containing blast furnace slag[J]. Chinese Journal of Engineering, 2016, 38(5): 658-667. DOI: 10.13374/j.issn2095-9389.2016.05.010

冷却方式对低钛高炉渣矿物组成和矿相结构的影响

Effect of cooling methods on the mineralogical composition and microstructure of low titanium-containing blast furnace slag

  • 摘要: 应用X射线衍射仪、偏光显微镜和扫描电镜对水淬和空冷低钛高炉渣的矿相组成、显微结构、TiO2分布规律及其差异性进行研究.结果表明:水淬渣和空冷渣中主要矿物组成均为玻璃质、钙钛矿、钙铝黄长石和镁硅钙石,但是两种炉渣中各矿物组分含量相差较大,空冷渣中钙铝黄长石和钙钛矿的平均体积分数分别为62.5%和12.5%,是水淬渣中钙铝黄长石和钙钛矿的2.27倍和1.92倍,而玻璃质的平均体积分数不足水淬渣的1/3.水淬渣和空冷渣中矿相显微结构差异较大,空冷渣中钙铝黄长石为钉齿状,而水淬渣中钙铝黄长石为呈羽毛状和针状,且结晶粒度较小,钙钛矿在水淬渣和空冷渣中分别呈星点状和树枝状分布,两种炉渣中镁硅钙石都为纺锤体形;水淬渣中TiO2主要分布在钙钛矿、玻璃质和钙铝黄长石中,而空冷渣中TiO2主要分布在钙钛矿和钙铝黄长石中,并且空冷渣中钙钛矿TiO2的分布率比水淬渣高8.41%,空冷方式更有利于将TiO2聚集在钙钛矿中.

     

    Abstract: The mineralogical composition,microstructure and TiO2 distribution rule of low titanium-containing blast furnace slags after water cooling and air cooling were investigated by X-ray diffraction,polarization microscopy and scanning electron microscopy.The results show that main mineralogical compositions in these slags are all vitreous,gehlenite,perovskite and merwinite,but the contents of mineral components in the two kinds of slags have much larger differences. The average contents of gehlenite and perovskite in the air-cooled slag are 62.5% and 12.5%,which are 2.27 and 1.92 times as large as those in the water-cooled slag,respectively.The content of vitreous in the air-cooled slag is less than a third of that in the water-cooled slag. The mineralogical microstructure of the water-cooled slag is pretty different from that of the air-cooled slag. Gehlenite in the water-cooled slag is dentate,but in the watercooled slag it is feathery and needle-shaped,and its grain size is smaller. Perovskite forms as star points and dendritic in the watercooled slag and the air-cooled slag,respectively. Merwinite is spindle-shaped both in the water-cooled slag and the air-cooled slag. It could be concluded that TiO2 in the water-cooled slag mainly distributes in perovskite,vitreous glassy and gehlenite,but TiO2 in theair-cooled slag mainly distributes in perovskite and gehlenite,and the distribution ratio of TiO2 in the air-cooled slag is 8.41% higher than that in the water-cooled slag. Air cooling is more beneficial to increase TiO2 content in perovskite.

     

/

返回文章
返回