• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低合金钢焊接热影响区的微观组织和韧性研究进展

李秀程 李学达 王学林 夏佃秀 王学敏 尚成嘉

李秀程, 李学达, 王学林, 夏佃秀, 王学敏, 尚成嘉. 低合金钢焊接热影响区的微观组织和韧性研究进展[J]. 工程科学学报, 2017, 39(5): 643-654. doi: 10.13374/j.issn2095-9389.2017.05.001
引用本文: 李秀程, 李学达, 王学林, 夏佃秀, 王学敏, 尚成嘉. 低合金钢焊接热影响区的微观组织和韧性研究进展[J]. 工程科学学报, 2017, 39(5): 643-654. doi: 10.13374/j.issn2095-9389.2017.05.001
LI Xiu-cheng, LI Xue-da, WANG Xue-lin, XIA Dian-xiu, WANG Xue-min, SHANG Cheng-jia. Research progress on microstructures and toughness of welding heat-affected zone in low-alloy steel[J]. Chinese Journal of Engineering, 2017, 39(5): 643-654. doi: 10.13374/j.issn2095-9389.2017.05.001
Citation: LI Xiu-cheng, LI Xue-da, WANG Xue-lin, XIA Dian-xiu, WANG Xue-min, SHANG Cheng-jia. Research progress on microstructures and toughness of welding heat-affected zone in low-alloy steel[J]. Chinese Journal of Engineering, 2017, 39(5): 643-654. doi: 10.13374/j.issn2095-9389.2017.05.001

低合金钢焊接热影响区的微观组织和韧性研究进展

doi: 10.13374/j.issn2095-9389.2017.05.001
详细信息
  • 中图分类号: TG401

Research progress on microstructures and toughness of welding heat-affected zone in low-alloy steel

  • 摘要: 对钢结构而言,诸如海洋平台、船舶、桥梁、建筑和油气管线等,焊接后的性能直接决定了其服役寿命和安全性,重要性不言而喻.在针对焊接相关问题的研究中,焊接热影响区的韧性提升一直是重点和难点.焊接热影响区会经历高达1400℃的高温,从而形成粗大的奥氏体晶粒,如果焊接参数控制不当,不能通过后续冷却过程中的相变细化组织,就会造成韧性的降低.而多道次焊接的情况更为复杂,前一道次形成的粗晶区还会在后续焊接过程中经历二次热循环,从而形成链状M-A,造成韧性的急剧下降.本文旨在对一些现有焊接热影响区的相关研究结果进行总结,探讨母材的成分、第二相及焊接工艺等因素对热影响区微观组织和性能的影响,为低温环境服役的大型钢结构的焊接性能改善提供一些设计思路.
  • [2] Ohya K, Kim J, Yokoyama K, et al. Microstructures relevant to brittle fracture initiation at the heat-affected zone of weldment of a low carbon steel. Metall Mater Trans A, 1996, 27(9):2574
    [3] Liessem A, Erdelen-Peppler M. A critical view on the significance of HAZ toughness testing//International Pipeline Conference. Calgary, 2004
    [4] Moeinifar S, Kokabi A H, Hosseini H R M. Role of tandem submerged arc welding thermal cycles on properties of the heat affected zone in X80 microalloyed pipe line steel. J Mater Process Technol, 2011, 211(3):368
    [5] Wang X L, Wang X M, Shang C J, et al. Characterization of the multi-pass weld metal and the impact of retained austenite obtained through intercritical heat treatment on low temperature toughness. Mater Sci Eng A, 2016, 649:282
    [6] Matsuda F, Fukada Y, Okada H, et al. Review of mechanical and metallurgical investigations of martensite-austenite constituent in welded joints in Japan. Weld World, 1996, 37(3):134
    [8] Guo A M, Li S R, Guo J, et al. Effect of zirconium addition on the impact toughness of the heat affected zone in a high strength low alloy pipeline steel. Mater Charact, 2008, 59(2):134
    [9] Bhadeshia H K D H. Reliability of weld microstructure and property calculations. Weld J, 2004, 83(9):237
    [11] You Y, Shang C J, Chen L, et al. Investigation on the crystallography of the transformation products of reverted austenite in intercritically reheated coarse grained heat affected zone. Mater Des, 2013, 43:485
    [15] Lambert-Perlade A, Gourgues A F, Besson J, et al. Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel. Metall Mater Trans A, 2004, 35(13):1039
    [16] Li Y, Baker T N. Effect of morphology of martensite-austenite phase on fracture of weld heat affected zone in vanadium and niobium microalloyed steels. Mater Sci Technol, 2010, 26(9):1029
    [17] Davis C L, King J E. Effect of cooling rate on intercritically reheated microstructure and toughness in high strength low alloy steel. Mater Sci Technol, 1993, 9(1):8
    [18] Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone:Part I. Fractographic evidence. Metall Mater Trans A, 1994, 25(3):563
    [19] Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone:Part Ⅱ. Failure criteria and statistical effects. Metall Mater Trans A, 1996, 27(10):3019
    [20] Mohseni P, Solberg J K, Karlsen M, et al. Cleavage fracture initiation at M-A constituents in intercritically coarse-grained heat-affected zone of a HSLA steel. Metall Mater Trans A, 2014, 45(1):384
    [21] Li X D, Ma X P, Subramanian S V, et al. Structure-property-fracture mechanism correlation in heat affected zone of X100 ferrite-bainite pipeline steel. Metall Mater Trans E, 2015, 2(1):1
    [22] Sakuma Y, Matsumura O, Takechi H. Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions. Metall Trans A, 1991, 22(2):489
    [23] Kim N J, Thomas G. Effects of morphology on the mechanical behavior of a dual phase Fe/2Si/0.1C steel. Metall Trans A, 1981, 12(3):483
    [24] Li X D, Ma X P, Suberamanian S V, et al. EBSD characterization of secondary microcracks in the heat affected zone of a X100 pipeline steel weld joint. Int J Fract, 2015, 193(2):131
    [26] Shi Y W, Han Z X. Effect of weld thermal cycle on microstructure and fracture toughness of simulated heat-affected zone for a 800 MPa grade high strength low alloy steel. J Mater Process Technol, 2008, 207(1):30
    [31] Bang K S, Jeong H S. Effect of nitrogen content on simulated heat affected zone toughness of titanium containing thermomechanically controlled rolled steel. Mater Sci Technol, 2002, 18(6):649
    [32] Loberg B, Nordgren A, Strid J, et al. The role of alloy composition on the stability of nitrides in Ti-microalloyed steels during weld thermal cycles. Metall Trans A, 1984, 15(1):33
    [33] Li X D,Ma X P,Subramanian S V, et al. Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel. Mater Sci Eng A, 2014, 616:141
    [35] Lambert A, Garat X, Sturel T, et al. Application of acoustic emission to the study of cleavage fracture mechanism in a HSLA steel. Scripta Mater, 2000, 43(2):161
    [36] Fuluhara T, Kawata H, Morito S, et al. Variant selection in grain boundary nucleation of upper bainite. Metall Mater Trans A, 2008, 39(5):1003
    [39] Gourgues A F, Flower H M, Lindley T C. Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures. Mater Sci Technol, 2000, 16(1):26
    [40] You Y, Shang C J, Nie W J, et al. Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content. Mater Sci Eng A, 2012, 558:692
    [41] Takayama N, Miyamoto G, Furuhara T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel. Acta Mater, 2012, 60(5):2387
    [42] Harrison P L, Farrar R A. Influence of oxygen-rich inclusions on the γ→α phase transformation in high-strength low-alloy (HSLA) steel weld metals. J Mater Sci, 1981, 16(8):2218
    [43] Wu K M, Inagawa Y, Enomoto M. Three-dimensional morphology of ferrite formed in association with inclusions in low-carbon steel. Mater Charact, 2004, 52(2):121
    [44] Cheng L, Wu K M. New insights into intragranular ferrite in a low-carbon low-alloy steel. Acta Mater, 2009, 57(13):3754
    [45] Wu K M. Three-dimensional analysis of acicular ferrite in a low-carbon steel containing titanium. Scripta Mater, 2006, 54(4):569
    [47] Yang J R, Bhadeshia H K D H. Orientation relationships between adjacent plates of acicular ferrite in steel weld deposits. Mater Sci Technol, 1989, 5(1):93
    [48] Xiong Z H, Liu S L, Wang X M, et al. The contribution of intragranular acicular ferrite microstructural constituent on impact toughness and impeding crack initiation and propagation in the heat-affected zone (HAZ) of low-carbon steels. Mater Sci Eng A, 2015, 636:117
    [49] Paniagua-Mercado A M, Lopez-Hirata V M, Dorantes-Rosales H J, et al. Effect of TiO2-containing fluxes on the mechanical properties and microstructure in submerged-arc weld steels. Mater Charact, 2009, 60(1):36
    [50] Farrar R A, Harrison P L. Acicular ferrite in carbon-manganese weld metals:an overview. J Mater Sci, 1987, 22(11):3812
    [51] Zhang X F, Han P, Terasaki H, et al. Analytical investigation of prior austenite grain size dependence of low temperature toughness in steel weld metal. J Mater Sci Technol, 2012, 28(3):241
    [52] Fattahi M, Nabhani N, Hosseini M, et al. Effect of Ti-containing inclusions on the nucleation of acicular ferrite and mechanical properties of multipass weld metals. Micron, 2013, 45:107
    [53] Lee H W, Kim Y H, Lee S H, et al. Effect of boron contents on weldability in high strength steel. J Mech Science Technol, 2007, 21(5):771
    [54] Yang J R, Huang C Y, Huang C F, et al. Influence of acicular ferrite and bainite microstructures on toughness for an ultra-low-carbon alloy steel weld metal. J Mater Sci Lett, 1993, 12(16):1290
    [56] Li X D, Fan Y R, Ma X P, et al. Influence of martensite-austenite constituents formed at different intercritical temperatures on toughness. Mater Des, 2015, 67:457
    [57] Wang X L, Wang X M, Shang C J, et al. Characterization of the multi-pass weld metal and the impact of retained austenite obtained through intercritical heat treatment on low temperature toughness. Mater Sci Eng A, 2016, 649:282
  • 加载中
计量
  • 文章访问数:  500
  • HTML全文浏览量:  100
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-19

目录

    /

    返回文章
    返回