• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海水鲈鱼鳞片及鳍骨中羟基磷灰石的X射线极图法和ODF法择优取向分析

苑蕾 王河锦 安佳丽 张楠 王冠玉

苑蕾, 王河锦, 安佳丽, 张楠, 王冠玉. 海水鲈鱼鳞片及鳍骨中羟基磷灰石的X射线极图法和ODF法择优取向分析[J]. 工程科学学报, 2017, 39(11): 1617-1625. doi: 10.13374/j.issn2095-9389.2017.11.002
引用本文: 苑蕾, 王河锦, 安佳丽, 张楠, 王冠玉. 海水鲈鱼鳞片及鳍骨中羟基磷灰石的X射线极图法和ODF法择优取向分析[J]. 工程科学学报, 2017, 39(11): 1617-1625. doi: 10.13374/j.issn2095-9389.2017.11.002
YUAN Lei, WANG He-jin, AN Jia-li, ZHANG Nan, WANG Guan-yu. Preferred orientation of hydroxylapatite in the scales and fins of seawater Lateolabrax japonicus determined using XRD pole figures and ODF[J]. Chinese Journal of Engineering, 2017, 39(11): 1617-1625. doi: 10.13374/j.issn2095-9389.2017.11.002
Citation: YUAN Lei, WANG He-jin, AN Jia-li, ZHANG Nan, WANG Guan-yu. Preferred orientation of hydroxylapatite in the scales and fins of seawater Lateolabrax japonicus determined using XRD pole figures and ODF[J]. Chinese Journal of Engineering, 2017, 39(11): 1617-1625. doi: 10.13374/j.issn2095-9389.2017.11.002

海水鲈鱼鳞片及鳍骨中羟基磷灰石的X射线极图法和ODF法择优取向分析

doi: 10.13374/j.issn2095-9389.2017.11.002
基金项目: 

国家自然科学基金资助项目(41372061,40972038)

详细信息
  • 中图分类号: O722;P578.92+2;TB321

Preferred orientation of hydroxylapatite in the scales and fins of seawater Lateolabrax japonicus determined using XRD pole figures and ODF

  • 摘要: 采用X射线衍射采集海水鲈鱼鳞片中羟基磷灰石(002)、(130)、(211)面网和鳍骨中羟基磷灰石(031)、(120)、(132)面网极图数据并计算了取向分布函数(ODF)以分析其择优取向特征,其中鳞片极图数据显示出羟基磷灰石结晶学c轴主要有3个择优取向,分别是与鳞片法线方向平行、相交39°和相交63°,而鳍骨极图推测出其羟基磷灰石c轴择优取向大致有五个方向,分别与鳍骨截面法线相交3°、9°、17°、24°和36°.ODF的计算结果表明,鳞片中羟基磷灰石有比较明显的择优取向是结晶学c轴近似平行于鳞片表面,同样,鳍骨ODF中羟基磷灰石择优取向为结晶学c轴近垂直于截面.极图和ODF结果上的差别是由于极图本身是晶体取向的二维投影图,单张极图显示的择优信息不够完整,因此ODF用来解析生物矿物的择优取向特征更为准确.鳞片和鳍骨中羟基磷灰石结构中的择优取向现象是因为生物矿化过程中有机质的调控作用而使结晶学c轴趋向平行胶原纤维长轴方向,并且这种择优特征也是硬体组织具有优良力学性能的要求.
  • [1] Lichtenegger H C, Schöberl T, Bartl M H, et al. High abrasion resistance with sparse mineralization:copper biomineral in worm jaws. Science, 2002, 298(5592):389
    [2] Aizenberg J, Tkachenko A, Weiner S, et al. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nat, 2001, 412(6849):819
    [3] Wang L Z, Zhang H Q, Fan Y B. Comparative study of the mechanical properties, microstructure, and composition of the cranial and beak bones of the great spotted woodpecker and the lark bird. Sci China Life Sci, 2011, 54(11):1036
    [7] Heilbronner R, Tullis J. Evolution of c-axis pole figures and grain size during dynamic recrystallization:results from experimentally sheared quartzite. J Geophys Res:Solid Earth, 2006, 111(B10):B10202.1
    [9] Mann S. Biomineralization:Principals and Concepts in Bioinorganic Materials Chemistry. Oxford:Oxford University Press, 2001
    [10] He J H, Zhao S R, Yang M X. Preferred orientation of aragonite in nacre of pinctada martensii shell determined by electron backscatter diffraction. Chin J Inorg Chem, 2014, 30(10):2252
    [11] Heilbronner R P. The autocorrelation function:an image processing tool for fabric analysis. Tectonophysics, 1992, 212(3-4):351
    [13] Li M J, Liu X L, Liu Y T, et al. Texture evolution and mechanical properties of Mg/Al multilayered composite sheets processed by accumulative roll bonding. Acta Metall Sin, 2016, 52(4):463
    [18] Bunge H J. Texture Analysis in Materials Science. London:Butterworths Press, 1982
    [20] Roe R J. Description of crystallite orientation in polycrystalline materials. Ⅲ. General solution to pole figure inversion. J Appl Phys, 1965, 36(6):2024
    [21] Bunge H J. Technological applications of texture analysis. Zeitschrift fuer Metallkunde, 1985, 76(7):457
    [27] Hoang Q Q, Sicheri F, Howard A J, et al. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature, 2003, 425(6961):977
    [29] Weiner S, Wagner H D. The material bone:structure-mechanical function relations. Annu Rev Mater Sci, 1998, 28:271
    [30] Landis W J, Song M J, Leith A, et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in 3 dimensions by high-voltage electron-microscopic tomography and graphic image reconstruction. J Struct Biol, 1993, 110(1):39
    [31] Ji B H, Gao H J. Mechanical principles of biological nanocomposites. Annu Rev Mater Res, 2010, 40:77
    [32] Traub W, Arad T, Weiner S. Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc Natl Acad Sci USA, 1989, 86(24):9822
    [33] Zylberberg L, Nicolas G. Ultrastructure of scales in a teleost (Carassius auraturs L) after use of rapid freeze-fixation and freeze-substitution. Cell Tissue Res, 1982, 223(2):349
    [35] Oxlund H, Barckman M, Ortoft G, et al. Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone, 1995, 17(Suppl 4):S365
    [36] Naleway S E, Taylor J R A, Porter M M, et al. Structure and mechanical properties of selected protective systems in marine organisms. Mater Sci Eng C Mater Biol Appl, 2016, 59:1143
    [37] Dumont M, Borbely A, Kaysser-Pyzalla A, et al. Long bone cortices in a growth series of Apatosaurus sp. (Dinosauria:Diplodocidae):geometry, body mass, and crystallite orientation of giant animals. Biol J Linn Soc, 2014, 112(4):782
  • 加载中
计量
  • 文章访问数:  392
  • HTML全文浏览量:  72
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-12

目录

    /

    返回文章
    返回