• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝合金表面脉冲电磁场对半连续铸造晶粒的细化

白庆伟 麻永林 邢淑清 冯艳飞 鲍鑫宇 于文霞

白庆伟, 麻永林, 邢淑清, 冯艳飞, 鲍鑫宇, 于文霞. 铝合金表面脉冲电磁场对半连续铸造晶粒的细化[J]. 工程科学学报, 2017, 39(12): 1828-1834. doi: 10.13374/j.issn2095-9389.2017.12.008
引用本文: 白庆伟, 麻永林, 邢淑清, 冯艳飞, 鲍鑫宇, 于文霞. 铝合金表面脉冲电磁场对半连续铸造晶粒的细化[J]. 工程科学学报, 2017, 39(12): 1828-1834. doi: 10.13374/j.issn2095-9389.2017.12.008
BAI Qing-wei, MA Yong-lin, XING Shu-qing, FENG Yan-fei, BAO Xin-yu, YU Wen-xia. Refining of a DC-casting aluminum alloy structure using surface electromagnetic pulsing[J]. Chinese Journal of Engineering, 2017, 39(12): 1828-1834. doi: 10.13374/j.issn2095-9389.2017.12.008
Citation: BAI Qing-wei, MA Yong-lin, XING Shu-qing, FENG Yan-fei, BAO Xin-yu, YU Wen-xia. Refining of a DC-casting aluminum alloy structure using surface electromagnetic pulsing[J]. Chinese Journal of Engineering, 2017, 39(12): 1828-1834. doi: 10.13374/j.issn2095-9389.2017.12.008

铝合金表面脉冲电磁场对半连续铸造晶粒的细化

doi: 10.13374/j.issn2095-9389.2017.12.008
基金项目: 

国家自然科学基金资助项目(51044002);科技部国际合作资助项目(2010DFB70630)

详细信息
  • 中图分类号: TF821

Refining of a DC-casting aluminum alloy structure using surface electromagnetic pulsing

  • 摘要: 采用一种新型熔体表面脉冲电磁技术对7A04铝合金半连续铸造凝固组织细化处理,分析脉冲电磁场对凝固组织及性能的影响.引入势能的观点,探讨脉冲磁能作用下的晶体形核动力学及初生晶核运动形式.结果表明,经表面脉冲电磁场处理后,凝固组织由晶粒尺寸粗大的玫瑰结构转变为细小且圆整的球状结构,铸锭心部及边部晶粒尺寸分别下降22.7%和14.2%,强度、塑性均有提高.动力学分析认为,脉冲电磁能降低体系形核所需的临界吉布斯自由能是增加形核率的重要原因,同时可导致初生α-Al运动的势能增加,促使初生α-Al颗粒优先到达稳定位置.
  • [1] Qi J G, Wang J Z, Du H L, et al. Heredity of aluminum melt by electric pulse modification (Ⅱ). J Iron Steel Res Int, 2007, 14(5):76
    [2] Dobroň P, Chmelík F, Yi S B, et al. Grain size effects on deformation twinning in an extruded magnesium alloy tested in compression. Scripta Mater, 2011, 65(5):424
    [3] Jain A, Duygulu O, Brown D W, et al. Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet. Mater Sci Eng A, 2008, 486(1-2):545
    [4] Ghaderi A, Barnett M R. Sensitivity of deformation twinning to grain size in titanium and magnesium. Acta Mater, 2011, 59(20):7824
    [6] Qian M, Ramirez A, Das A. Ultrasonic refinement of magnesium by cavitation:clarifying the role of wall crystals. J Cryst Growth, 2009, 311(14):3708
    [7] Nakada M, Shiohara Y, Flemings M C. Modification ofsolidification structures by pulse electric discharging. ISIJ Int, 1990, 30(1):27
    [8] Spencer D B, Mehrabian R, Flemings M C. Rheological behavior of Sn-15 pct Pb in the crystallization range. Metall Trans, 1972, 3(7):1925
    [9] Yin Z X, Gong Y Y, Li B, et al. Refining of pure aluminum cast structure by surface pulsed magneto-oscillation. J Mater Process Tech, 2012, 212(12):2629
    [11] Li Y J, Tao W Z, Yang Y S. Grain refinement of Al-Cu alloy in low voltage pulsed magnetic field. J Mater Process Tech, 2012, 212(4):903
    [12] Chen H, Jie J C,Fu Y, et al. Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation. T Nonferr Met Soc China, 2014, 24(5):1295
    [13] Ferreira P J, Liu H B, Vander Sande J B. A model for the texture development of high-Tc superconductors under an elevated magnetic field. J Mater Res, 1999, 14(7):2751
    [14] Gong Y Y, Luo J, Jing J X, et al. Structure refinement of pure aluminum by pulse magneto-oscillation. Mater Sci Eng A, 2008, 497(1-2):147
    [15] Chen Y S, Zhang L, Liu W C, et al. Preparation of Mg-Nd-Zn-(Zr) alloys semisolid slurry by electromagnetic stirring. Mater Design, 2016, 95:398
    [17] Terzieff P, Lück R. Magnetic investigations in liquid Al-In. J Alloy Compd, 2003, 360(1-2):205
    [18] Gale W F, Totemeier T C. Smithells Metals Reference Book. 8th Ed. New York:Butterworth-Heinemann, 2004
    [19] Gündüz M, Hunt J D. Solid-liquid surface energy in the Al-Mg system. Acta Mater, 1989, 37(7):1839
    [20] Radjai A, Miwa K, Nishio T. An investigation of the effects caused by electromagnetic vibrations in a hypereutectic Al-Si alloy melt. Metall Mater Trans A, 1998, 29(5):1477
    [22] Motokawa M, Mogi I, Tagami M, et al. Magnetic levitation experiments in Tohoku University. Physica B, 1998, 256-258:618
    [23] Takagi T, Iwai K, Asai S. Solidified structure of Al alloys by a local imposition of an electromagnetic oscillationg force. ISIJ Int, 2003, 43(6):842
    [25] Xu Z M, Li T X, Zhou Y H. An in situ surface composite produced by electromagnetic force. Mater Res Bull, 2000, 35(14-15):2331
    [26] Yasuda H, Ohnaka I, Kawakami O, et al. Effect of magnetic field on solidification in Cu-Pb monotectic alloys. ISIJ Int, 2003, 43(6):942
    [27] Lehmann P, Moreau R, Camel D, et al. Modification of interdendritic convection in directional solidification by a uniform magnetic field. Acta Mater, 1998, 46(11):4067
    [28] Sun Z, Guo M, Verhaeghe F, et al. Magnetic interaction between two non-magnetic particles migrating in a conductive fluid induced by a strong magnetic field-an analytical approach. Prog Electromagn Res, 2010, 103:1
  • 加载中
计量
  • 文章访问数:  513
  • HTML全文浏览量:  103
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-03

目录

    /

    返回文章
    返回