• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不同保温措施下的铁水包热状态模拟分析

袁飞 杨光 徐安军 冯凯

袁飞, 杨光, 徐安军, 冯凯. 基于不同保温措施下的铁水包热状态模拟分析[J]. 工程科学学报, 2018, 40(1): 31-40. doi: 10.13374/j.issn2095-9389.2018.01.005
引用本文: 袁飞, 杨光, 徐安军, 冯凯. 基于不同保温措施下的铁水包热状态模拟分析[J]. 工程科学学报, 2018, 40(1): 31-40. doi: 10.13374/j.issn2095-9389.2018.01.005
YUAN Fei, YANG Guang, XU An-jun, FENG Kai. Thermal state simulation analysis of molten iron ladle based on different insulation measures[J]. Chinese Journal of Engineering, 2018, 40(1): 31-40. doi: 10.13374/j.issn2095-9389.2018.01.005
Citation: YUAN Fei, YANG Guang, XU An-jun, FENG Kai. Thermal state simulation analysis of molten iron ladle based on different insulation measures[J]. Chinese Journal of Engineering, 2018, 40(1): 31-40. doi: 10.13374/j.issn2095-9389.2018.01.005

基于不同保温措施下的铁水包热状态模拟分析

doi: 10.13374/j.issn2095-9389.2018.01.005
基金项目: 

国家重点研发计划课题资助项目(2016YFB0601301);国家自然科学基金资助项目(51674030)

详细信息
  • 中图分类号: TF703.7

Thermal state simulation analysis of molten iron ladle based on different insulation measures

  • 摘要: 在铁钢界面现有模式下的铁水运输过程中,由于铁水包运行周期及保温效果不够理想,导致在高炉接铁时铁包耐材温度低,热状态差,使得铁水在铁水包内的热量损失较大.减小铁水温降能有效防止铁水包结壳结瘤,降低离线烘烤频率,间接提高铁水包周转率;同时在转炉冶炼过程中,低温铁水将严重影响废钢的加入量和吹氧等操作.由此可见,铁水温度控制是钢铁企业节能降耗和高效有序生产的关键因素之一.为了减小铁水温降,本文建立了多种不同保温措施情况下的铁水包传热模型,通过fluent软件对各模型在不同空包时间情况下的温度场进行数值计算,分析不同保温措施及空包时间下热状态对铁水温降的影响规律.分析结果表明:无保温措施的情况下空包时间由5 h缩短至3 h能降低下一周期铁水温降2.2 K·h-1;空包阶段最合理的保温措施为增设6 mm左右绝热层并加包盖,能提高工作层平均温度约155 K,在空包3~5 h内能减小铁水温降3.4~3.7 K·h-1.该结论为铁水包空包阶段采取合理保温措施及不同保温情况下空包运行时间控制提供了理论指导.
  • [1] Tian H Y, Chen F R, Xie R J, et al. Finite element analysis of 100 t hot metal ladle in process of tipping. J Iron Steel Res Int, 2010, 17(11):19
    [6] Huang B F, Tian N Y, Ma Z W, et al. Control model of multifunctional hot metal ladles. J Iron Steel Res Int, 2016, 23(12):1262
    [7] Huang B F, Tian N Y, Shi Z, et al. Material flow control technology of ironmaking and steelmaking interface. J Cent South Univ, 2014, 21(9):3559
    [9] Tripathi A, Saha J K, Singh J B, et al. Numerical simulation of heat transfer phenomenon in steel making ladle. ISIJ Int, 2012, 52(9):1591
    [10] Kabakov Z K, Pakholkova M A. Reducing the loss of heat from steel in steel-pouring ladles. Metallurgist, 2013, 56(9-10):670
    [12] Kochubeev Y N, Kungurtsev V N, Mironova L V, et al. A technology for production of composite refractory materials for the lining of steel ladles. Refract Ind Ceram, 2005, 46(2):81
    [14] Wu P F, Xu A J, Tian N Y, et al. Steel temperature compensating model with multi-factor coupling based on ladle thermal state. J Iron Steel Res Int, 2012, 19(5):9
    [15] Martynenko G M, Maltsev S M, Zabolotnyi S A. Ceramoconcrete refractory and heat-insulating components in ferrous and nonferrous metallurgy. Refract Ind Ceram, 2009, 50(3):163
    [17] Fredman T P. Heat transfer in steelmaking ladle refractories and steel temperature. Scand J Metall, 2000, 29(6):232
    [18] Yu J K, Han L. Preparation of nanoporous thermal insulating materials and their application as ladle linings. China Refract, 2014, 23(4):13
    [19] Xia J L, Ahokainen T. Transient flow and heat transfer in a steelmaking ladle during the holding period. Metall Mater Trans B, 2001, 32(4):733
    [21] Li G F, Liu J, Jiang G Z, et al. Numerical simulation of temperature field and thermal stress field in the new type of ladle with the nanometer adiabatic material. Adv Mech Eng, 2015, 7(4):1
    [22] Gleiser M, Wilflingseder F, Eder J. Concepts of refractory lining for pig-iron ladles. Refract Ind Ceram, 2007, 48(2):77
    [23] Liu S W, Yu J K, Mao F X. Thermal behavior modeling of interior refractory lining of torpedo-ladle by finite element method. Adv Mater Res, 2011, 282-283:444
    [24] Glaser B, Görnerup M, Du S C. Thermal modelling of the ladle preheating process. Steel Res Int, 2011, 82(12):1425
    [25] Gu Z X, Xu A J, Chang J B, et al. Optimization of the production organization pattern in Tangshan Iron and Steel Co. Ltd. J Iron Steel Res Int, 2014, 21(Suppl 1):17
    [26] Zhou J A, Xie J B, Wang B, et al. New insight into investigation of thermal transfer of molten steel inside a ladle with vacuum shell. J Therm Anal Calorim, 2017, 128(1):481
    [28] Li L M, Liu Z Q, Cao M X, et al. Large eddy simulation of bubbly flow and slag layer behavior in ladle with discrete phase model (DPM)-volume of fluid (VOF) coupled model. JOM, 2015, 67(7):1459
    [29] Morales R D, Garcia-Hernandez S, Barreto J D J, et al. Multiphase flow modeling of slag entrainment during ladle change-over operation. Metall Mater Trans B, 2016, 47(4):2595
    [30] Fredman T P, Torrkulla J, Saxén H. Two-dimensional dynamic simulation of the thermal state of ladles. Metall Mater Trans B, 1999, 30(2):323
    [32] Visloguzova É A, Kashcheev I D, Serova L V, et al. Corundumpericlase-carbon refractories for lining steel-pouring ladles. Refract Ind Ceram, 2010, 51(1):9
  • 加载中
计量
  • 文章访问数:  414
  • HTML全文浏览量:  170
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-12

目录

    /

    返回文章
    返回