• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高钒耐磨合金在不同冷却方式下的高温氧化行为

陈平虎 李瑞卿 曾松盛 李晓谦

陈平虎, 李瑞卿, 曾松盛, 李晓谦. 高钒耐磨合金在不同冷却方式下的高温氧化行为[J]. 工程科学学报, 2018, 40(1): 84-91. doi: 10.13374/j.issn2095-9389.2018.01.011
引用本文: 陈平虎, 李瑞卿, 曾松盛, 李晓谦. 高钒耐磨合金在不同冷却方式下的高温氧化行为[J]. 工程科学学报, 2018, 40(1): 84-91. doi: 10.13374/j.issn2095-9389.2018.01.011
CHEN Ping-hu, LI Rui-qing, ZENG Song-sheng, LI Xiao-qian. High temperature oxidation behavior of high-vanadium wear resistant alloy in different cooling approaches[J]. Chinese Journal of Engineering, 2018, 40(1): 84-91. doi: 10.13374/j.issn2095-9389.2018.01.011
Citation: CHEN Ping-hu, LI Rui-qing, ZENG Song-sheng, LI Xiao-qian. High temperature oxidation behavior of high-vanadium wear resistant alloy in different cooling approaches[J]. Chinese Journal of Engineering, 2018, 40(1): 84-91. doi: 10.13374/j.issn2095-9389.2018.01.011

高钒耐磨合金在不同冷却方式下的高温氧化行为

doi: 10.13374/j.issn2095-9389.2018.01.011
基金项目: 

国家自然科学基金面上项目(51475480, U1637601);中南大学高性能复杂制造国家重点实验室项目(ZZYJKT2016-03,ZZYJKT2017-01);中南大学研究生自主探索创新项目(2015zzts041)

详细信息
  • 中图分类号: TG142.72

High temperature oxidation behavior of high-vanadium wear resistant alloy in different cooling approaches

  • 摘要: 研究了950℃高温下高钒耐磨合金的高温氧化行为,并研究了在随炉冷却和空冷两种不同冷却方式下的氧化增重与开裂行为.结果表明:氧化初期材料表面发生“暂态氧化” ,所有元素均参与氧化反应,随后在炉冷时氧化增重比空冷时的氧化增重要大的多,当氧化8 h后单位面积氧化增重分别为82.7 mg·cm-2与39.1 mg·cm-2,炉冷与空冷氧化增质量相差一倍多.虽然在基体/氧化层界面形成了能起到一定保护作用的50~200 nm厚Cr2O3致密氧化层,但同时也存在疏松氧化层;而炉冷时样品以生长应力为主,氧化层发生“翘曲”现象,但较少引起氧化层脱落.然而空冷时冷却速度较大,氧化层内易产生较大热应力,致使氧化层较易开裂或者脱落.
  • [1] Moskalyk R R, Alfantazi A M. Processing of vanadium:a review. Miner Eng, 2003, 16(9):793
    [2] Lee D G, Lee K, Lee S. Effects of tempering on microstructure, hardness, and fracture toughness of VC/steel surface composite fabricated by high-energy electron beam irradiation. Surf Coat Technol, 2006, 201(3-4):1296
    [3] Zhao W M, Liu Z X, Ju Z L, et al. Effects of vanadium and rareearth on carbides and properties of high chromium cast iron. Mater Sci Forum, 2008, 575-578:1414
    [4] Ye F X, Hojamberdiev M, Xu Y H, et al. (Fe,Cr)7C3/Fe surface gradient composite:microstructure, microhardness, and wear resistance. Mater Chem Phys, 2014, 147(3):823
    [6] Brady M P, Yamamoto Y, Santella M L, et al. Effects of minor alloy additions and oxidation temperature on protective alumina scale formation in creep-resistant austenitic stainless steels. Scripta Mater, 2007, 57(12):1117
    [7] Kusumoto K, Shimizu K, Yaer X, et al. High erosion-oxidation performance of Fe-based Nb or V containing multi-component alloys with Co addition at 1173 K. Mater Des, 2015, 88:366
    [8] Gao P H, Cao S T, Li J P, et al. High temperature oxidation resistance of M42C stainless steel coatings deposited on the surface of cast iron through atmospheric plasma spraying. J Alloys Compd, 2016, 684:188
    [9] Abe F, Kutsumi H, Haruyama H, et al. Improvement of oxidation resistance of 9 mass% chromium steel for advanced-ultra supercritical power plant boilers by pre-oxidation treatment. Corros Sci, 2016, 114:1
    [10] Li D S, Dai Q X, Cheng X N, et al. High-temperature oxidation resistance of austenitic stainless steel Crl8Nil 1Cu3Al3MnNb. J Iron Steel Res Int, 2012, 19(5):74
    [11] Li R, Zhou Z, He D Y, et al. Microstructure and high-temperature oxidation behavior of wire-arc sprayed Fe-based coatings. Surf Coat Technol, 2014, 251:186
    [12] Krüger M. High temperature compression strength and oxidation of a V-9Si-13B alloy. Scripta Mater, 2016, 121:75
    [13] Luo X X, Yao Z J, Zhang P Z, et al. A study on high temperature oxidation behavior of double glow plasma surface metallurgy Fe-Al-Cr alloyed layer on Q235 steel. Appl Surf Sci, 2014, 305:259
    [14] Chattopadhyay B, Wood G C. The transient oxidation of alloys. Oxid Met, 1970, 2(4):373
    [15] Huntz A M, Schütze M. Stresses generated during oxidation sequences and high temperature fracture. Mater High Temp, 1994, 12(2-3):151
    [16] Yang F, Liu B, Fang D N. Analysis on high-temperature oxidation and growth stress of iron-based alloy using phase field method. Appl Math Mech, 2011, 32(6):757
    [17] Panicaud B, Grosseau-Poussard J L, Dinhut J F. On the growth strain origin and stress evolution prediction during oxidation of metals. Appl Surf Sci, 2006, 252(16):5700
    [18] Chen J W, Jiang Z, Mu H, et al. Simulation on the thermal stress of super304H oxidation scale at 600℃. Adv Mater Res, 2015, 1065-1069:1934
    [19] Ren C, He Y D, Wang D R. Fabrication and characteristics of YSZ-YSZ/Al2O3 double-layer TBC. Oxid Met, 2011, 75(5-6):325
    [20] Xu C H, Gao W. Pilling-bedworth ratio for oxidation of alloys. Mater Res Innovations, 2000, 3(4):231
  • 加载中
计量
  • 文章访问数:  470
  • HTML全文浏览量:  84
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-07

目录

    /

    返回文章
    返回