• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微观机理的页岩气运移分析

张鹏伟 胡黎明 温庆博

张鹏伟, 胡黎明, 温庆博. 基于微观机理的页岩气运移分析[J]. 工程科学学报, 2018, 40(2): 136-143. doi: 10.13374/j.issn2095-9389.2018.02.002
引用本文: 张鹏伟, 胡黎明, 温庆博. 基于微观机理的页岩气运移分析[J]. 工程科学学报, 2018, 40(2): 136-143. doi: 10.13374/j.issn2095-9389.2018.02.002
ZHANG Peng-wei, HU Li-ming, WEN Qing-bo. Micro-mechanism analysis of shale gas migration[J]. Chinese Journal of Engineering, 2018, 40(2): 136-143. doi: 10.13374/j.issn2095-9389.2018.02.002
Citation: ZHANG Peng-wei, HU Li-ming, WEN Qing-bo. Micro-mechanism analysis of shale gas migration[J]. Chinese Journal of Engineering, 2018, 40(2): 136-143. doi: 10.13374/j.issn2095-9389.2018.02.002

基于微观机理的页岩气运移分析

doi: 10.13374/j.issn2095-9389.2018.02.002
基金项目: 

清华大学自主科研计划资助项目(THZ20161080101);国家自然科学基金资助项目(41372352)

详细信息
  • 中图分类号: TU42

Micro-mechanism analysis of shale gas migration

  • 摘要: 认识气体在页岩孔隙中的运移机理对页岩气开采具有重要的科学意义.页岩作为一种致密岩石,孔隙尺寸分布主要集中在几纳米到百纳米之间,小孔隙尺寸与气体的平均分子自由程在同一个数量级,气体与孔隙边壁的碰撞对流动起到控制作用.本文针对页岩气开采过程中孔隙中气体流动过程,建立了考虑气体滑移、Knudsen扩散、Langmuir等温吸附、孔隙压缩等过程的多场耦合控制方程.分析了流态变化对滑移效应的影响,得到了考虑滑移效应的临界孔径,并针对实际中不同页岩储层有机质含量的差异,分析了解吸机制对页岩气产气率、产气量的贡献.研究还表明孔隙压缩性对产气率影响显著,通过考虑开采过程中孔隙压缩,可以更真实地反映页岩气运移过程.
  • [3] Amann-Hilddenrand A, Ghanizadeh A, Krooss B M. Transport properties of unconventional gas systems. Mar Pet Geol, 2012, 31(1): 90
    [4] Chalmers G R, Bustin R M, Power I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull, 2012, 96(6): 1099
    [5] Soeder D J. Porosity and permeability of Eastern Devonian gas shale. SPE Form Eval, 1988, 3(1): 116
    [6] Javadpour F. Nanopores and apparent permeability of gas flow in Mudrocks (shales and siltstone). J Can Pet Technol, 2009, 48(8): 16
    [7] Ziarani A S, Aguilera R. Knudsen's permeability correction for tight porous media. Transport Porous Media, 2012, 91(1): 239
    [8] Beskok A, Karniadakis G E. Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys Eng, 1999, 3(1): 43
    [11] Zhang P W, Hu L M, Wen Q B, et al. A multi-flow regimes model for simulating gas transport in shale matrix. Géotechnique Lett, 2015, 5(3): 231
    [12] Zhang P W, Hu L M, Meegoda J N, et al. Micro/nano-pore network analysis of gas flow in shale matrix. Sci Rep, 2015, 5: 13501
    [13] Zhang P W, Hu L M, Meegoda J N. Pore-scale simulation and sensitivity analysis of apparent gas permeability in shale matrix. Mater, 2017, 10(2), 104
    [15] Hill D G, Nelson C R. Gas productive fractured shales: an overview and update. Gas TIPS, 2000, 6(3): 4
    [18] Gilron J, Soffer A. Knudsen diffusion in microporous carbon membranes with molecular sieving character. J Membr Sci, 2002, 209(2): 339
    [19] Freeman C M, Moridis G J, Blasingame T. A numerical study of microscale flow behavior in tight gas and shale gas reservoir systems. Transport Porous Media, 2011, 90(1): 253
    [20] Palmer I, Mansoori J. How permeability depends on stress and pore pressure in coalbeds: a new model // SPE Annual Technical Conference and Exhibition. Denver, 1996: 36737
    [21] Bustin A M M, Bustin R M. Importance of rock properties on the producibility of gas shales. Int J Coal Geol, 2012, 103: 132
    [22] Curtis M E, Sondergeld C H, Ambrose R J, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bull, 2012, 96(4): 665
    [23] Cui X J, Bustin R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams. AAPG Bull, 2005, 89(9): 1181
    [24] Pape H, Clauser C, Iffland J. Permeability prediction based on fractal pore-space geometry. Geophysics, 1999, 64(5): 1447
    [25] Freeman C M, Moridis G J, Ilk D, et al. A numerical study of performance for tight gas and shale gas reservoir systems. J Pet Sci Eng, 2013, 108: 22
    [26] Wu Y S, Pruess K, Persoff P. Gas flow in porous media with Klinkenberg effects. Transport Porous Media, 1998, 32(1): 117
    [27] Florence F A, Rushing J A, Newsham K E, et al. Improved permeability prediction relations for low permeability sands. SPE Int, 2007, 107954: 1
    [28] Civan F. Effective correlation of apparent gas permeability in tight porous media. Transport Porous Med, 2009, 82(2): 375
  • 加载中
计量
  • 文章访问数:  529
  • HTML全文浏览量:  222
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-06

目录

    /

    返回文章
    返回