• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机抑制剂SDD与BX在铜活化闪锌矿表面的竞争吸附机制

罗德强 刘建 王瑜 曾勇

罗德强, 刘建, 王瑜, 曾勇. 有机抑制剂SDD与BX在铜活化闪锌矿表面的竞争吸附机制[J]. 工程科学学报, 2018, 40(5): 540-547. doi: 10.13374/j.issn2095-9389.2018.05.003
引用本文: 罗德强, 刘建, 王瑜, 曾勇. 有机抑制剂SDD与BX在铜活化闪锌矿表面的竞争吸附机制[J]. 工程科学学报, 2018, 40(5): 540-547. doi: 10.13374/j.issn2095-9389.2018.05.003
LUO De-qiang, LIU Jian, WANG Yu, ZENG Yong. Competitive adsorption mechanism of organic depressant SDD with BX on copper-activated sphalerite[J]. Chinese Journal of Engineering, 2018, 40(5): 540-547. doi: 10.13374/j.issn2095-9389.2018.05.003
Citation: LUO De-qiang, LIU Jian, WANG Yu, ZENG Yong. Competitive adsorption mechanism of organic depressant SDD with BX on copper-activated sphalerite[J]. Chinese Journal of Engineering, 2018, 40(5): 540-547. doi: 10.13374/j.issn2095-9389.2018.05.003

有机抑制剂SDD与BX在铜活化闪锌矿表面的竞争吸附机制

doi: 10.13374/j.issn2095-9389.2018.05.003
基金项目: 

云南省青年人才培养基金资助项目(KKSY201421110)

云铜校企预研基金资助项目(KKZ4201521003)

国家自然科学基金资助项目(51764037,51704135)

详细信息
  • 中图分类号: TD952

Competitive adsorption mechanism of organic depressant SDD with BX on copper-activated sphalerite

  • 摘要: 通过单矿物浮选试验揭示了有机抑制剂SDD对铜活化闪锌矿的抑制情况. 在此基础上,采用Zeta电位测试、Versa STAT电化学工作站的局部交流阻抗(LEIS)测试、前线轨道理论计算对SDD和BX(丁基黄药)在铜活化闪锌矿表面的竞争吸附机理进行了研究. 浮选试验结果表明:SDD是一种铜锌分离的高效抑制剂,能够有效的抑制闪锌矿,而黄铜矿几乎不受影响;此外,还发现SDD具有用量少且十分敏感的特性,在pH为10,SDD为4.0×10-5 mol·L-1的最佳条件下,能够将铜活化闪锌矿的回收率降低至16.59%,而黄铜矿的回收率为81.64%. Zeta电位和局部交流阻抗(LEIS)分析表明:SDD不但能够占据铜活化闪锌矿表面的活化位点,而且其吸附能力强于BX,这极大的降低了BX在铜活化闪锌矿表面的吸附量,从而对铜活化闪锌矿表现出良好的抑制作用. 前线轨道理论计算进一步证实SDD与铜活化闪锌矿作用能力强于BX.
  • [1] Jiao F, Qin W Q, Liu R Z, et al. Adsorption mechanism of 2-mercaptobenzothiazole on chalcopyrite and sphalerite surfaces:Ab initio, and spectroscopy studies. Trans Nonferrous Met Soc China, 2015, 25(7):2388
    [4] Liu J, Wen S M, Deng J S, et al. DFT study of ethyl xanthate interaction with sphalerite (110) surface in the absence and presence of copper. Appl Surf Sci, 2014, 311:258
    [5] Liu J, Wen S M, Chen X M, et al. DFT computation of Cu adsorption on the S atoms of sphalerite (110) surface. Miner Eng, 2013, 46-47:1
    [6] Porento M, Hirva P. Effect of copper atoms on the adsorption of ethyl xanthate on a sphalerite surface. Surf Sci, 2005, 576(1-3):98
    [7] Ekmekçi Z, Aslan A, Hassoy H. Effects of EDTA on selective flotation of sulphide minerals. Physicochem Problems Miner Process, 2004, 38:79
    [8] Huang P, Cao M L, Liu Q. Selective depression of sphalerite by chitosan in differential Pb/Zn flotation. Int J Miner Process, 2013, 122:29
    [10] Qin W Q, Jiao F, Sun W, et al. Effects of sodium salt of N, N-dimethyldi-thiocarbamate on floatability of chalcopyrite, sphalerite, marmatite and its adsorption properties. Colloids Surf A:Physicochem Eng Aspects, 2013, 421:181
    [14] Jin T Y, Cheng Y F. In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel. Corros Sci, 2011, 53(2):850
    [15] Long X H, Chen J H, Chen Y. Adsorption of ethyl xanthate on ZnS(110) surface in the presence of water molecules:a DFT study. Appl Surf Sci, 2016, 370:11
    [16] Long X H, Chen Y, Chen J H, et al. The effect of water molecules on the thiol collector interaction on the galena (PbS) and sphalerite (ZnS) surfaces:a DFT study. Appl Surf Sci, 2016, 389:103
    [18] Wang J Y, Liu Q X, Zeng H B. Understanding copper activation and xanthate adsorption on sphalerite by time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy, and in situ scanning electrochemical microscopy. J Phys Chem C, 2013, 117(39):20089
    [19] Fukui K, Yonezawa T, Nagata C, et al. Molecular orbital theory of orientation in aromatic, heteroaromatic, and other conjugated molecules. J Chem Phys, 1954, 22(8):1433
  • 加载中
计量
  • 文章访问数:  507
  • HTML全文浏览量:  163
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-19

目录

    /

    返回文章
    返回