• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高锰钢高速冲击时剪切区TRIP行为的准原位分析

林颖 王强 杨平

林颖, 王强, 杨平. 高锰钢高速冲击时剪切区TRIP行为的准原位分析[J]. 工程科学学报, 2018, 40(6): 703-713. doi: 10.13374/j.issn2095-9389.2018.06.008
引用本文: 林颖, 王强, 杨平. 高锰钢高速冲击时剪切区TRIP行为的准原位分析[J]. 工程科学学报, 2018, 40(6): 703-713. doi: 10.13374/j.issn2095-9389.2018.06.008
LIN Ying, WANG Qiang, YANG Ping. Quasi-in-situ analysis of TRIP behaviors in shear zones of high-manganese steel specimen under dynamic compression[J]. Chinese Journal of Engineering, 2018, 40(6): 703-713. doi: 10.13374/j.issn2095-9389.2018.06.008
Citation: LIN Ying, WANG Qiang, YANG Ping. Quasi-in-situ analysis of TRIP behaviors in shear zones of high-manganese steel specimen under dynamic compression[J]. Chinese Journal of Engineering, 2018, 40(6): 703-713. doi: 10.13374/j.issn2095-9389.2018.06.008

高锰钢高速冲击时剪切区TRIP行为的准原位分析

doi: 10.13374/j.issn2095-9389.2018.06.008
基金项目: 

国家自然科学基金资助项目(51271028)

详细信息
  • 中图分类号: TG142.3

Quasi-in-situ analysis of TRIP behaviors in shear zones of high-manganese steel specimen under dynamic compression

  • 摘要: 利用背散射电子衍射技术对高速冲击前后高锰钢样品强制剪切区域的晶粒进行准原位观察,分析了剪切区域不同位置晶粒的相变情况,并借助有限元模拟及受力计算对不同晶粒相变程度差异的原因做了进一步分析.结果表明,在高速变形下,应力应变水平、奥氏体取向及晶粒间的相互作用共同影响TRIP行为:应力应变水平越高,相变程度越大;由于帽型样中剪切应力的存在,相比于近〈111〉取向奥氏体,近〈100〉和近〈110〉取向奥氏体相变程度更大,近〈110〉取向相变程度最大.具有有利取向的奥氏体,晶粒尺寸越大,其相变行为受周围晶粒影响越小,越容易充分相变;具有有利取向的长条状奥氏体晶粒,若其两侧晶粒难相变,则该晶粒相变将受到束缚;带有尖角的晶粒,变形时应力集中难以释放,易发生相变;当晶粒的孪生分力大于滑移,但其最大和次大的孪生分力相差不大,可能导致在这两个方向孪生互相竞争,反而不易相变.高速变形时体心马氏体多在晶界应力集中处产生,很少在晶粒内部大量产生,形态多为细片状,变体选择强.
  • [1] Sugimoto K, Usui N, Kobayashi M, et al. Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels. ISIJ Int, 1992, 32(12):1311
    [2] Grässel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int J Plast, 2000, 16(10-11):1391
    [3] Sakuma Y, Matlock D K, Krauss G. Intercritically annealed and isothermally transformed 0.15 Pct C steels containing 1.2 Pct Si -1.5 Pct Mn and 4 Pct Ni:Part Ⅱ. Effect of testing temperature on stress-strain behavior and deformation-induced austenite transformation. Metall Trans A, 1992, 23(4):1233
    [4] Frommeyer G, Brüx U, Neumann P. Supra-ductile and highstrength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int, 2003, 43(3):438
    [5] Gong X, Fan J L, Huang B Y, et al. Microstructure characteristics and a deformation mechanism of fine-grained tungsten heavy alloy under high strain rate compression. Mater Sci Eng A, 2010, 527(29-30):7565
    [6] Lichtenfeld J A, Van Tyne C J, Mataya M C. Effect of strain rate on stress-strain behavior of alloy 309 and 304L austenitic stainless steel. Metall Mater Trans A, 2006, 37(1):147
    [7] Talonen J, Hänninen H, Nenonen P, et al. Effect of strain rate on the strain-induced γ→α'-martensitic transformation and mechanical properties of austenitic stainless steels. Metall Mater Trans A, 2005, 36(2):421
    [8] Sun X R, Wang H Z, Yang P, et al. Mechanical behaviors and micro-shear structures of metals with different structures by highspeed compression. Acta Metall Sin, 2014, 50(4):387
    [9] Sun X R, Wang H Z, Yang P, et al. Behavior of transformationinduced plasticity during adiabatic shear bands formation in high manganese steels. Steel Res Int, 2014, 85(10):1465
    [10] Li J, Yang H Y, Yang P. Prolonged work hardening range in high manganese TRIP steel during adiabatic shear band formation. Mater Lett, 2014, 134:180
    [11] Wang H Z, Sun X R, Yang P, et al. Analysis of the transformation-induced plasticity effect during the dynamic deformation of high-manganese steel. J Mater Sci Technol, 2015, 31(2):191
    [12] Wang H Z, Sun X R, Yang P, et al. Inspection of adiabatic shear bands in high manganese TRIP steels. Mater Sci Forum, 2013, 753:72
    [14] Park K K, Oh S T, Baeck S M, et al. In-situ deformation behavior of retained austenite in TRIP steel. Mater Sci Forum, 2002, 408-412:571
    [15] Li W S, Gao H Y, Nakashima H, et al. In-situ study of the deformation-induced rotation and transformation of retained austenite in a low-carbon steel treated by the quenching and partitioning process. Mater Sci Eng A, 2016, 649:417
    [16] Li N, Wang Y D, Liu W J, et al. In situ X-ray micro diffraction study of deformation-induced phase transformation in 304 austenitic stainless steel. Acta Mater, 2014, 64:12
    [17] Yang H Y, Li J, Yang P. The change of orientation relationships between austenite and α'-martensitic during deformation in high manganese TRIP steel. Acta Metall Sin, 2015, 28(3):289
    [18] Choi J Y, Lee J, Lee K, et al. Effects of the strain rate on the tensile properties of a TRIP-aided duplex stainless steel. Mater Sci Eng A, 2016, 666:280
    [19] Das A, Tarafder S, Chakraborti P C. Estimation of deformation induced martensitic in austenitic stainless steels. Mater Sci Eng A, 2011, 529:9
    [20] Das A, Sivaprasad S, Ghosh M, et al. Morphologies and characteristics of deformation induced martensitic during tensile deformation of 304 LN stainless steel. Mater Sci Eng A, 2008, 486(1-2):283
    [21] He Z P, He Y L, Ling Y T, et al. Effect of strain rate on deformation behavior of TRIP steels. J Mater Process Technol, 2012, 212(10):2141
    [22] Yang P, Liu T Y, Lu F Y, et al. Orientation dependence of martensitic transformation in high Mn TRIP/TWIP steels. Steel Res Int, 2012, 83(4):368
    [25] Zhang W N, Liu Z Y, Zhang Z B, et al. The crystallographic mechanism for deformation induced martensitic transformation observed by high resolution transmission electron microscope. Mater Lett, 2013, 91:158
    [26] Eskandari M, Zarei-Hanzaki A, Mohtadi-Bonab M A, et al. Grain-orientation-dependent of γ-ε-α' transformation and twinning in a super-high-strength, high ductility austenitic Mn-steel. Mater Sci Eng A, 2016, 674:514
  • 加载中
计量
  • 文章访问数:  464
  • HTML全文浏览量:  112
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-23

目录

    /

    返回文章
    返回